A Working Condition Diagnosis Model of Sucker Rod Pumping Wells Based on Deep Learning

抽油杆 卷积神经网络 联营 油井 人工智能 深度学习 测功机 蜗壳 计算机科学 数据集 模式识别(心理学) 集合(抽象数据类型) 工程类 石油工程 机械工程 程序设计语言 入口
作者
Xiang Wang,Yanfeng He,Fajun Li,Zhen Wang,Xiangji Dou,Hanlin Xu,Lipei Fu
出处
期刊:SPE production & operations [Society of Petroleum Engineers]
卷期号:36 (02): 317-326 被引量:6
标识
DOI:10.2118/205015-pa
摘要

Summary Monitoring the working conditions of sucker rod pumping wells in a timely and accurate manner is important for oil production. With the development of smart oil fields, more and more sensors are installed on the well, and the monitored data are continuously transmitted to the data center to form big data. In this work, we aim to utilize the big data collected during oil well production and a deep learning technique to build a new generation of intelligent diagnosis model to monitor working condition of sucker rod pumping wells. More than 5×106 of well monitoring records, which covers information from about 1 year for more than 300 wells in an oilfield block, are collected and preprocessed. To show the dynamic changes of the working conditions for the wells, the overlay dynamometer card is proposed and plotted for each data record. The working conditions are divided into 30 types, and the corresponding data set is created. An intelligent diagnosis model using the convolutional neural network (CNN), one of the deep learning frameworks, is proposed. By the convolution and pooling operation, the CNN can extract features of an image implicitly without human effort and prior knowledge. That makes a CNN very suitable for the recognition of the overlay dynamometer cards. The architecture for a working condition diagnosis CNN model is designed. The CNN model consists of 14 layers with six convolutional layers, three pooling layers, and three fully connected layers. The total number of neurons is more than 1.7×106. The overlay dynamometer card data set is used to train and validate the CNN model. The accuracy and efficiency of the model are evaluated. Both the training and validation accuracies of the CNN model are greater than 99% after 10 training epochs. The average training elapsed time for an epoch is 8909.5 seconds, and the average time to diagnosis a sample is 1.3 milliseconds. Based on the trained CNN model, a working condition monitoring software for a sucker rod pumping well is developed. The software runs 7 × 24 hours to diagnosis the working conditions of wells and post a warning to users. It also has a feedback learning workflow to update the CNN model regularly to improve its performance. The on-site run shows that the actual accuracy of the CNN model is greater than 90%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
居崽完成签到 ,获得积分10
3秒前
忧心的若云完成签到,获得积分10
5秒前
mkljl完成签到 ,获得积分10
5秒前
嘟噜完成签到 ,获得积分10
7秒前
加油鸭完成签到 ,获得积分10
8秒前
mm给mm的求助进行了留言
10秒前
丸子鱼完成签到 ,获得积分10
16秒前
Shabby0-0完成签到,获得积分10
16秒前
nano完成签到 ,获得积分10
18秒前
18秒前
高高的笑柳完成签到 ,获得积分10
20秒前
何糖完成签到,获得积分10
20秒前
韭菜发布了新的文献求助10
23秒前
0530完成签到,获得积分10
24秒前
RYK完成签到 ,获得积分10
25秒前
缥缈可乐完成签到,获得积分10
25秒前
森林木完成签到,获得积分10
25秒前
谦让的不乐完成签到 ,获得积分10
26秒前
makenemore完成签到,获得积分10
27秒前
聪慧的石头完成签到,获得积分10
27秒前
小雨完成签到,获得积分10
27秒前
天真完成签到 ,获得积分10
28秒前
pp1230完成签到,获得积分10
29秒前
Sea完成签到,获得积分10
32秒前
xxxksk完成签到 ,获得积分10
32秒前
WSY完成签到 ,获得积分10
33秒前
所所应助韭菜采纳,获得10
34秒前
华仔应助精神的精神病采纳,获得10
34秒前
PeGe完成签到,获得积分10
36秒前
小路完成签到,获得积分10
36秒前
coff完成签到,获得积分10
37秒前
skbkbe完成签到 ,获得积分10
39秒前
wuda完成签到,获得积分10
39秒前
美丽的仙人掌完成签到,获得积分10
39秒前
夜曦完成签到 ,获得积分10
40秒前
40秒前
SUN完成签到,获得积分0
41秒前
听海完成签到 ,获得积分10
41秒前
42秒前
42秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248882
求助须知:如何正确求助?哪些是违规求助? 2892279
关于积分的说明 8270432
捐赠科研通 2560561
什么是DOI,文献DOI怎么找? 1389110
科研通“疑难数据库(出版商)”最低求助积分说明 651004
邀请新用户注册赠送积分活动 627850