Efficient structural reliability analysis based on adaptive Bayesian support vector regression

过度拟合 支持向量机 计算机科学 统计学习理论 替代模型 数学优化 可靠性(半导体) 概率逻辑 机器学习 人工智能 算法 数学 人工神经网络 量子力学 物理 功率(物理)
作者
Jinsheng Wang,Chenfeng Li,Guoji Xu,Yongle Li,Ahsan Kareem
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:387: 114172-114172 被引量:37
标识
DOI:10.1016/j.cma.2021.114172
摘要

To reduce the computational burden for structural reliability analysis involving complex numerical models, many adaptive algorithms based on surrogate models have been developed. Among the various surrogate models, the support vector machine for regression (SVR) which is derived from statistical learning theory has demonstrated superior performance to handle nonlinear problems and to avoid overfitting with excellent generalization. Therefore, to take the advantage of the desirable features of SVR, an Adaptive algorithm based on the Bayesian SVR model (ABSVR) is proposed in this study. In ABSVR, a new learning function is devised for the effective selection of informative sample points following the concept of the penalty function method in optimization. To improve the uniformity of sample points in the design of experiments (DoE), a distance constraint term is added to the learning function. Besides, an adaptive sampling region scheme is employed to filter out samples with weak probability density to further enhance the efficiency of the proposed algorithm. Moreover, a hybrid stopping criterion based on the error-based stopping criterion using the bootstrap confidence estimation is developed to terminate the active learning process to ensure that the learning algorithm stops at an appropriate stage. The proposed ABSVR is easy to implement since no embedded optimization algorithm nor iso-probabilistic transformation is required. The performance of ABSVR is evaluated using six numerical examples featuring different complexity, and the results demonstrate the superior performance of ABSVR for structural reliability analysis in terms of accuracy and efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Akim应助陆靖易采纳,获得10
2秒前
科研通AI5应助LIGANG1111采纳,获得10
3秒前
健壮熊猫发布了新的文献求助10
4秒前
万能图书馆应助淡定的勒采纳,获得10
4秒前
5秒前
自觉的糖豆完成签到 ,获得积分20
5秒前
小远完成签到,获得积分10
5秒前
小周同学完成签到 ,获得积分10
5秒前
喵呜完成签到,获得积分10
6秒前
丘比特应助梓歆采纳,获得10
6秒前
七月流火给ddzxcz的求助进行了留言
7秒前
冷艳醉山完成签到,获得积分10
7秒前
11秒前
小聂发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
13秒前
Hexagram发布了新的文献求助10
13秒前
yookia应助kid1412采纳,获得10
14秒前
14秒前
14秒前
14秒前
vivianzhang完成签到,获得积分10
16秒前
酷波er应助嘎嘎乐儿采纳,获得10
16秒前
陆靖易发布了新的文献求助10
17秒前
学分发布了新的文献求助10
17秒前
陶醉的谷秋完成签到,获得积分10
18秒前
AlexLee发布了新的文献求助30
19秒前
阳光的班发布了新的文献求助10
19秒前
GG发布了新的文献求助10
19秒前
羊二呆发布了新的文献求助10
19秒前
21秒前
Owen应助inin采纳,获得10
22秒前
天天快乐应助Vizz采纳,获得10
22秒前
23秒前
no发布了新的文献求助10
25秒前
大聪发布了新的文献求助10
25秒前
26秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980154
求助须知:如何正确求助?哪些是违规求助? 3524160
关于积分的说明 11220159
捐赠科研通 3261641
什么是DOI,文献DOI怎么找? 1800734
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807232