亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Efficient structural reliability analysis based on adaptive Bayesian support vector regression

过度拟合 支持向量机 计算机科学 统计学习理论 替代模型 数学优化 可靠性(半导体) 概率逻辑 机器学习 人工智能 算法 数学 人工神经网络 量子力学 物理 功率(物理)
作者
Jinsheng Wang,Chenfeng Li,Guoji Xu,Yongle Li,Ahsan Kareem
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:387: 114172-114172 被引量:37
标识
DOI:10.1016/j.cma.2021.114172
摘要

To reduce the computational burden for structural reliability analysis involving complex numerical models, many adaptive algorithms based on surrogate models have been developed. Among the various surrogate models, the support vector machine for regression (SVR) which is derived from statistical learning theory has demonstrated superior performance to handle nonlinear problems and to avoid overfitting with excellent generalization. Therefore, to take the advantage of the desirable features of SVR, an Adaptive algorithm based on the Bayesian SVR model (ABSVR) is proposed in this study. In ABSVR, a new learning function is devised for the effective selection of informative sample points following the concept of the penalty function method in optimization. To improve the uniformity of sample points in the design of experiments (DoE), a distance constraint term is added to the learning function. Besides, an adaptive sampling region scheme is employed to filter out samples with weak probability density to further enhance the efficiency of the proposed algorithm. Moreover, a hybrid stopping criterion based on the error-based stopping criterion using the bootstrap confidence estimation is developed to terminate the active learning process to ensure that the learning algorithm stops at an appropriate stage. The proposed ABSVR is easy to implement since no embedded optimization algorithm nor iso-probabilistic transformation is required. The performance of ABSVR is evaluated using six numerical examples featuring different complexity, and the results demonstrate the superior performance of ABSVR for structural reliability analysis in terms of accuracy and efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hoinyes发布了新的文献求助10
3秒前
14秒前
17秒前
大个应助hoinyes采纳,获得10
29秒前
35秒前
1分钟前
1分钟前
tree完成签到 ,获得积分10
1分钟前
1分钟前
zsmj23完成签到 ,获得积分0
1分钟前
1分钟前
2分钟前
梦幻征途完成签到,获得积分10
2分钟前
2分钟前
梦幻征途发布了新的文献求助10
2分钟前
qing_li完成签到,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
白熊完成签到 ,获得积分10
3分钟前
3分钟前
烟花应助zhb123采纳,获得10
3分钟前
4分钟前
zhb123发布了新的文献求助10
4分钟前
舒心聪展发布了新的文献求助10
4分钟前
zhb123完成签到,获得积分10
4分钟前
bkagyin应助贝加尔湖畔采纳,获得10
4分钟前
fdwang完成签到 ,获得积分10
5分钟前
共享精神应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得30
5分钟前
语物完成签到,获得积分10
5分钟前
水刃木完成签到,获得积分10
5分钟前
Zgrey完成签到 ,获得积分10
5分钟前
5分钟前
YU完成签到 ,获得积分10
5分钟前
6分钟前
六六发布了新的文献求助20
6分钟前
汉堡包应助yhw采纳,获得10
6分钟前
yimomo完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681583
求助须知:如何正确求助?哪些是违规求助? 5010277
关于积分的说明 15175826
捐赠科研通 4841086
什么是DOI,文献DOI怎么找? 2594918
邀请新用户注册赠送积分活动 1547912
关于科研通互助平台的介绍 1505927