Usability of various dwell times for eye-gaze-based object selection with eye tracking

停留时间 眼动 凝视 对象(语法) 计算机视觉 人工智能 字母数字 计算机科学 视频跟踪 选择(遗传算法) 可用性 视觉搜索 眼球运动 心理学 人机交互 临床心理学 程序设计语言
作者
Yesaya Tommy Paulus,Gerard B. Remijn
出处
期刊:Displays [Elsevier]
卷期号:67: 101997-101997 被引量:24
标识
DOI:10.1016/j.displa.2021.101997
摘要

This study investigates the usability of various "dwell times" for selecting visual objects with eye-gaze-based input by means of eye tracking. Two experiments are described in which participants used eye-gaze-based input to select visual objects consisting of alphanumeric characters, dots, or visual icons. First, a preliminary experiment was designed to identify the range of dwell time durations suitable for eye-gaze-based object selection. Twelve participants were asked to evaluate, on a 7-point rating scale, how easily they could perform an object-selection task with a dwell time of 250, 500, 1000, or 2000 ms per object. The evaluations showed that a dwell time of 250 ms to around 1000 ms was rated as potentially useful for object selection with eye-gaze-based input. In the following main experiment, therefore, 30 participants used eye tracking to select object sequences from a display with a dwell time of 200, 400, 800, 1000 or 1200 ms per object. Object selection time, object selection success rate, the number of object selection corrections, and dwell time evaluations were obtained. The results showed that the total time necessary to select visual objects (object selection time) increased when dwell time increased, but longer dwell times resulted in a higher object-selection success rate and fewer object selection corrections. Furthermore, regardless of object type, eye-gaze-based object selection with dwell times of 200–800 ms was significantly slower for participants with glasses than for those without glasses. Most importantly, participant evaluations showed that a dwell time of 600 ms per object was easiest to use for eye-gaze-based selection of all three types of visual objects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aiden完成签到,获得积分10
2秒前
槐序完成签到,获得积分20
2秒前
云隐完成签到,获得积分10
2秒前
hunting完成签到,获得积分10
5秒前
5秒前
共享精神应助潇潇雨歇采纳,获得10
6秒前
寂寞的寄文完成签到,获得积分10
6秒前
爱静静应助大力的无声采纳,获得10
7秒前
和平使命应助大力的无声采纳,获得10
7秒前
8秒前
jessie发布了新的文献求助10
8秒前
小马甲应助寂寞的寄文采纳,获得10
11秒前
12秒前
岸在海的深处完成签到 ,获得积分10
13秒前
xiao应助小吴采纳,获得10
14秒前
西溪完成签到 ,获得积分10
14秒前
15秒前
pi发布了新的文献求助10
16秒前
hunting发布了新的文献求助10
16秒前
16秒前
jujijuji应助Anquan采纳,获得10
16秒前
17秒前
17秒前
bkagyin应助科研通管家采纳,获得10
19秒前
CodeCraft应助科研通管家采纳,获得10
19秒前
王黎应助科研通管家采纳,获得30
19秒前
李爱国应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
Neko应助科研通管家采纳,获得20
20秒前
20秒前
JiangHb完成签到,获得积分10
21秒前
22秒前
22秒前
Jian发布了新的文献求助20
22秒前
lingjuanwu发布了新的文献求助10
22秒前
南鸢完成签到 ,获得积分10
23秒前
今后应助wbn1212采纳,获得10
23秒前
光电彭于晏完成签到,获得积分10
23秒前
丰盛的煎饼应助LiShin采纳,获得10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851