Macromolecular Topology Engineering

拓扑(电路) 高分子 化学 数学 生物化学 组合数学
作者
Zhiyu Qu,Stephen Z. D. Cheng,Wenbin Zhang
出处
期刊:Trends in chemistry [Elsevier]
卷期号:3 (5): 402-415 被引量:47
标识
DOI:10.1016/j.trechm.2021.02.002
摘要

Macromolecular topology mainly concerns the connectivity and spatial relationship of molecular segments as defined by the bonding threshold and entanglement in space. Four elemental types of macromolecular topology (i.e., branched structures, multicyclic structures, knots, and links) are identified and their combination further contributes to the beauty and complexity of macromolecular topology. Nature provides many excellent examples of topological macromolecules and inspires macromolecular topology engineering. Assembly-reaction synergy has emerged as a powerful approach for the synthesis of topological macromolecules. Topology is a unique dimension for macromolecular engineering. The topological effects on a macromolecule could be understood in terms of changing molecular shape, reshaping conformational space, and bringing in dynamic features. Topology is an intriguing topic in chemistry and an important molecular attribute for macromolecules. Herein, we discuss the concept of topology in different contexts to clarify the meaning and scope of macromolecular topology. The beauty and complexity of macromolecular topology is recognized and presented. Relevant advances in the syntheses and structure–property relationship of topological polymers are summarized. Among them, assembly-reaction synergy has emerged as a particularly powerful approach to prepare topological polymers. Indeed, these topologically nontrivial macromolecules exhibit unique properties not found in their linear counterparts. Current challenges and prospects are then discussed, pointing to a growing dynamic field of macromolecular topology engineering. Topology is an intriguing topic in chemistry and an important molecular attribute for macromolecules. Herein, we discuss the concept of topology in different contexts to clarify the meaning and scope of macromolecular topology. The beauty and complexity of macromolecular topology is recognized and presented. Relevant advances in the syntheses and structure–property relationship of topological polymers are summarized. Among them, assembly-reaction synergy has emerged as a particularly powerful approach to prepare topological polymers. Indeed, these topologically nontrivial macromolecules exhibit unique properties not found in their linear counterparts. Current challenges and prospects are then discussed, pointing to a growing dynamic field of macromolecular topology engineering. a type of knot in Alexander–Briggs notation. The main number 8 denotes the number of crossings and the subscript 19 is the rank of this knot that differentiates it from others with the same number of crossings (Figure 2). a synthetic method involving assembly to prearrange molecule(s) into specific 3D geometry with a defined spatial relationship with subsequent covalent fixation to give molecules of complex topologies. a chemical philosophy that describes perfectly ideal chemical reactions with features such as excellent yields, spring-loaded reactivity, non-offensive byproducts, operational facility, high selectivity, and modularity. consists of two rings linked together exactly once. It is the simplest nontrivial link with more than one component (Figure 2). an entanglement in space between two or more molecular entities (component parts) such that they cannot be separated without breaking or distorting chemical bonds between atoms. a graph constructed to represent a polymer structure with the vertex being a branch point (i.e., a collection of atoms) and the edge being a linear structure (i.e., a chain of bonds between two branch points). It has facilitated the analysis and systematic nomenclature of polymer topology. the θ-curves are embeddings of the Greek letter θ in the 3D space. In macromolecules, they are a class of polymers with the topology of θ-curves.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Coconut发布了新的文献求助30
刚刚
1秒前
1秒前
Lyric发布了新的文献求助10
3秒前
栖枝完成签到 ,获得积分10
3秒前
jt完成签到,获得积分10
4秒前
5秒前
三块石头发布了新的文献求助10
6秒前
6秒前
7秒前
快乐砖家发布了新的文献求助10
7秒前
9秒前
所所应助拾新采纳,获得10
10秒前
10秒前
维奈克拉应助YJM采纳,获得10
10秒前
笑语盈盈发布了新的文献求助10
11秒前
11秒前
Zx_1993应助旺旺小小贝采纳,获得10
12秒前
科研通AI6应助顺利松鼠采纳,获得10
12秒前
Orange应助Lyric采纳,获得10
12秒前
YYH完成签到,获得积分10
13秒前
在水一方应助zhangguo采纳,获得10
13秒前
在水一方应助科研助理采纳,获得10
14秒前
研友_VZG7GZ应助薄荷味采纳,获得10
14秒前
15秒前
pluto应助王妞妞采纳,获得10
16秒前
satchzhao发布了新的文献求助10
16秒前
曾经的小松鼠完成签到,获得积分20
16秒前
17秒前
17秒前
wanci应助zzz采纳,获得10
18秒前
笑语盈盈完成签到,获得积分10
18秒前
kekekek完成签到 ,获得积分10
18秒前
大心完成签到,获得积分10
19秒前
Jackpu完成签到,获得积分10
19秒前
20秒前
20秒前
wln发布了新的文献求助10
22秒前
22秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453741
求助须知:如何正确求助?哪些是违规求助? 4561252
关于积分的说明 14281645
捐赠科研通 4485241
什么是DOI,文献DOI怎么找? 2456565
邀请新用户注册赠送积分活动 1447292
关于科研通互助平台的介绍 1422687