Macromolecular Topology Engineering

拓扑(电路) 高分子 化学 数学 生物化学 组合数学
作者
Zhiyu Qu,Stephen Z. D. Cheng,Wenbin Zhang
出处
期刊:Trends in chemistry [Elsevier BV]
卷期号:3 (5): 402-415 被引量:47
标识
DOI:10.1016/j.trechm.2021.02.002
摘要

Macromolecular topology mainly concerns the connectivity and spatial relationship of molecular segments as defined by the bonding threshold and entanglement in space. Four elemental types of macromolecular topology (i.e., branched structures, multicyclic structures, knots, and links) are identified and their combination further contributes to the beauty and complexity of macromolecular topology. Nature provides many excellent examples of topological macromolecules and inspires macromolecular topology engineering. Assembly-reaction synergy has emerged as a powerful approach for the synthesis of topological macromolecules. Topology is a unique dimension for macromolecular engineering. The topological effects on a macromolecule could be understood in terms of changing molecular shape, reshaping conformational space, and bringing in dynamic features. Topology is an intriguing topic in chemistry and an important molecular attribute for macromolecules. Herein, we discuss the concept of topology in different contexts to clarify the meaning and scope of macromolecular topology. The beauty and complexity of macromolecular topology is recognized and presented. Relevant advances in the syntheses and structure–property relationship of topological polymers are summarized. Among them, assembly-reaction synergy has emerged as a particularly powerful approach to prepare topological polymers. Indeed, these topologically nontrivial macromolecules exhibit unique properties not found in their linear counterparts. Current challenges and prospects are then discussed, pointing to a growing dynamic field of macromolecular topology engineering. Topology is an intriguing topic in chemistry and an important molecular attribute for macromolecules. Herein, we discuss the concept of topology in different contexts to clarify the meaning and scope of macromolecular topology. The beauty and complexity of macromolecular topology is recognized and presented. Relevant advances in the syntheses and structure–property relationship of topological polymers are summarized. Among them, assembly-reaction synergy has emerged as a particularly powerful approach to prepare topological polymers. Indeed, these topologically nontrivial macromolecules exhibit unique properties not found in their linear counterparts. Current challenges and prospects are then discussed, pointing to a growing dynamic field of macromolecular topology engineering. a type of knot in Alexander–Briggs notation. The main number 8 denotes the number of crossings and the subscript 19 is the rank of this knot that differentiates it from others with the same number of crossings (Figure 2). a synthetic method involving assembly to prearrange molecule(s) into specific 3D geometry with a defined spatial relationship with subsequent covalent fixation to give molecules of complex topologies. a chemical philosophy that describes perfectly ideal chemical reactions with features such as excellent yields, spring-loaded reactivity, non-offensive byproducts, operational facility, high selectivity, and modularity. consists of two rings linked together exactly once. It is the simplest nontrivial link with more than one component (Figure 2). an entanglement in space between two or more molecular entities (component parts) such that they cannot be separated without breaking or distorting chemical bonds between atoms. a graph constructed to represent a polymer structure with the vertex being a branch point (i.e., a collection of atoms) and the edge being a linear structure (i.e., a chain of bonds between two branch points). It has facilitated the analysis and systematic nomenclature of polymer topology. the θ-curves are embeddings of the Greek letter θ in the 3D space. In macromolecules, they are a class of polymers with the topology of θ-curves.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Moon完成签到,获得积分10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
小马甲应助明月清风采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
英吉利25发布了新的文献求助10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
小熊猫应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
3秒前
ZiyuanLi完成签到 ,获得积分10
4秒前
爆米花应助Amy采纳,获得10
4秒前
kk发布了新的文献求助10
4秒前
9秒前
科研狗完成签到 ,获得积分10
9秒前
和谐的火龙果完成签到,获得积分10
11秒前
12秒前
cosimo完成签到 ,获得积分10
15秒前
CZLhaust发布了新的文献求助10
16秒前
phl发布了新的文献求助10
16秒前
llj发布了新的文献求助20
16秒前
DS驳回了小二郎应助
17秒前
17秒前
丘比特应助piaopiao采纳,获得10
18秒前
传奇3应助CZLhaust采纳,获得30
20秒前
21秒前
英姑应助sun采纳,获得10
21秒前
22秒前
追寻的安南完成签到,获得积分10
22秒前
23秒前
Alone完成签到 ,获得积分10
23秒前
24秒前
勤恳绝施完成签到,获得积分10
24秒前
科研通AI6应助ws123采纳,获得10
25秒前
ding应助qiongqiong采纳,获得10
27秒前
迷路冰巧完成签到,获得积分10
27秒前
卡比托发布了新的文献求助10
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1500
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5123717
求助须知:如何正确求助?哪些是违规求助? 4328095
关于积分的说明 13486321
捐赠科研通 4162431
什么是DOI,文献DOI怎么找? 2281452
邀请新用户注册赠送积分活动 1282864
关于科研通互助平台的介绍 1221964