已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

High-dimensional generalized propensity score with application to omics data

协变量 因果推理 倾向得分匹配 Lasso(编程语言) 混淆 计算机科学 结果(博弈论) 推论 数据集 统计 计量经济学 数学 人工智能 机器学习 万维网 数理经济学
作者
Qian Gao,Yu Zhang,Jie Liang,Hongwei Sun,Tong Wang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (6) 被引量:4
标识
DOI:10.1093/bib/bbab331
摘要

Propensity score (PS) methods are popular when estimating causal effects in non-randomized studies. Drawing causal conclusion relies on the unconfoundedness assumption. This assumption is untestable and is considered more plausible if a large number of pre-treatment covariates are included in the analysis. However, previous studies have shown that including unnecessary covariates into PS models can lead to bias and efficiency loss. With the ever-increasing amounts of available data, such as the omics data, there is often little prior knowledge of the exact set of important covariates. Therefore, variable selection for causal inference in high-dimensional settings has received considerable attention in recent years. However, recent studies have focused mainly on binary treatments. In this study, we considered continuous treatments and proposed the generalized outcome-adaptive LASSO (GOAL) to select covariates that can provide an unbiased and statistically efficient estimation. Simulation studies showed that when the outcome model was linear, the GOAL selected almost all true confounders and predictors of outcome and excluded other covariates. The accuracy and precision of the estimates were close to ideal. Furthermore, the GOAL is robust to model misspecification. We applied the GOAL to seven DNA methylation datasets from the Gene Expression Omnibus database, which covered four brain regions, to estimate the causal effects of epigenetic aging acceleration on the incidence of Alzheimer's disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cc应助大侦探皮卡丘采纳,获得20
刚刚
1秒前
不辣的完成签到 ,获得积分10
3秒前
4秒前
艺术家完成签到 ,获得积分10
5秒前
6秒前
liuzi发布了新的文献求助10
7秒前
11秒前
于听枫完成签到 ,获得积分10
11秒前
guang98765发布了新的文献求助10
12秒前
fgd应助24K金纯采纳,获得10
12秒前
12秒前
12秒前
13秒前
guozizi发布了新的文献求助30
14秒前
14秒前
正直天空发布了新的文献求助30
15秒前
su完成签到 ,获得积分10
15秒前
超级紊发布了新的文献求助30
17秒前
18秒前
幽默山羊完成签到,获得积分10
19秒前
19秒前
Flanker发布了新的文献求助10
20秒前
Rondab应助大侦探皮卡丘采纳,获得10
20秒前
整齐半青完成签到 ,获得积分10
21秒前
Owen应助slb1319采纳,获得10
21秒前
LIN发布了新的文献求助20
21秒前
善学以致用应助guang98765采纳,获得10
22秒前
22秒前
MTF发布了新的文献求助10
24秒前
椰椰柠发布了新的文献求助30
25秒前
25秒前
26秒前
28秒前
28秒前
爆米花应助小王要努力采纳,获得10
30秒前
李健的小迷弟应助liuzi采纳,获得10
30秒前
LIN发布了新的文献求助10
31秒前
32秒前
顾矜应助Flanker采纳,获得10
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956731
求助须知:如何正确求助?哪些是违规求助? 3502835
关于积分的说明 11110432
捐赠科研通 3233801
什么是DOI,文献DOI怎么找? 1787571
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802172