High-dimensional generalized propensity score with application to omics data

协变量 因果推理 倾向得分匹配 Lasso(编程语言) 混淆 计算机科学 结果(博弈论) 推论 数据集 统计 计量经济学 数学 人工智能 机器学习 万维网 数理经济学
作者
Qian Gao,Yu Zhang,Jie Liang,Hongwei Sun,Tong Wang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (6) 被引量:4
标识
DOI:10.1093/bib/bbab331
摘要

Propensity score (PS) methods are popular when estimating causal effects in non-randomized studies. Drawing causal conclusion relies on the unconfoundedness assumption. This assumption is untestable and is considered more plausible if a large number of pre-treatment covariates are included in the analysis. However, previous studies have shown that including unnecessary covariates into PS models can lead to bias and efficiency loss. With the ever-increasing amounts of available data, such as the omics data, there is often little prior knowledge of the exact set of important covariates. Therefore, variable selection for causal inference in high-dimensional settings has received considerable attention in recent years. However, recent studies have focused mainly on binary treatments. In this study, we considered continuous treatments and proposed the generalized outcome-adaptive LASSO (GOAL) to select covariates that can provide an unbiased and statistically efficient estimation. Simulation studies showed that when the outcome model was linear, the GOAL selected almost all true confounders and predictors of outcome and excluded other covariates. The accuracy and precision of the estimates were close to ideal. Furthermore, the GOAL is robust to model misspecification. We applied the GOAL to seven DNA methylation datasets from the Gene Expression Omnibus database, which covered four brain regions, to estimate the causal effects of epigenetic aging acceleration on the incidence of Alzheimer's disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俭朴仇血完成签到,获得积分10
1秒前
km完成签到,获得积分10
1秒前
Aiden完成签到,获得积分10
5秒前
槐序完成签到,获得积分20
5秒前
云隐完成签到,获得积分10
5秒前
hunting完成签到,获得积分10
8秒前
8秒前
共享精神应助潇潇雨歇采纳,获得10
9秒前
寂寞的寄文完成签到,获得积分10
9秒前
爱静静应助大力的无声采纳,获得10
10秒前
和平使命应助大力的无声采纳,获得10
10秒前
11秒前
jessie发布了新的文献求助10
11秒前
小马甲应助寂寞的寄文采纳,获得10
14秒前
15秒前
岸在海的深处完成签到 ,获得积分10
16秒前
xiao应助小吴采纳,获得10
17秒前
西溪完成签到 ,获得积分10
17秒前
18秒前
pi发布了新的文献求助10
19秒前
hunting发布了新的文献求助10
19秒前
19秒前
jujijuji应助Anquan采纳,获得10
19秒前
20秒前
20秒前
bkagyin应助科研通管家采纳,获得10
22秒前
CodeCraft应助科研通管家采纳,获得10
22秒前
王黎应助科研通管家采纳,获得30
22秒前
李爱国应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
Neko应助科研通管家采纳,获得20
23秒前
23秒前
JiangHb完成签到,获得积分10
24秒前
25秒前
25秒前
Jian发布了新的文献求助20
25秒前
lingjuanwu发布了新的文献求助10
25秒前
南鸢完成签到 ,获得积分10
26秒前
今后应助wbn1212采纳,获得10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851