亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

High-dimensional generalized propensity score with application to omics data

协变量 因果推理 倾向得分匹配 Lasso(编程语言) 混淆 计算机科学 结果(博弈论) 推论 数据集 统计 计量经济学 数学 人工智能 机器学习 万维网 数理经济学
作者
Qian Gao,Yu Zhang,Jie Liang,Hongwei Sun,Tong Wang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (6) 被引量:4
标识
DOI:10.1093/bib/bbab331
摘要

Propensity score (PS) methods are popular when estimating causal effects in non-randomized studies. Drawing causal conclusion relies on the unconfoundedness assumption. This assumption is untestable and is considered more plausible if a large number of pre-treatment covariates are included in the analysis. However, previous studies have shown that including unnecessary covariates into PS models can lead to bias and efficiency loss. With the ever-increasing amounts of available data, such as the omics data, there is often little prior knowledge of the exact set of important covariates. Therefore, variable selection for causal inference in high-dimensional settings has received considerable attention in recent years. However, recent studies have focused mainly on binary treatments. In this study, we considered continuous treatments and proposed the generalized outcome-adaptive LASSO (GOAL) to select covariates that can provide an unbiased and statistically efficient estimation. Simulation studies showed that when the outcome model was linear, the GOAL selected almost all true confounders and predictors of outcome and excluded other covariates. The accuracy and precision of the estimates were close to ideal. Furthermore, the GOAL is robust to model misspecification. We applied the GOAL to seven DNA methylation datasets from the Gene Expression Omnibus database, which covered four brain regions, to estimate the causal effects of epigenetic aging acceleration on the incidence of Alzheimer's disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助lily采纳,获得10
3秒前
Viva应助ying采纳,获得20
9秒前
善学以致用应助清脆大米采纳,获得10
12秒前
13秒前
Vce April完成签到,获得积分10
14秒前
研友_VZG7GZ应助ajianq采纳,获得10
15秒前
22秒前
23秒前
25秒前
ajianq发布了新的文献求助10
27秒前
lily发布了新的文献求助10
28秒前
Perry完成签到,获得积分10
28秒前
Anthocyanidin完成签到,获得积分10
36秒前
lily完成签到,获得积分10
37秒前
Owen应助科研通管家采纳,获得10
39秒前
完美的海完成签到 ,获得积分0
56秒前
Demi发布了新的文献求助20
1分钟前
jyy完成签到,获得积分10
1分钟前
1分钟前
朴素千愁发布了新的文献求助20
1分钟前
1分钟前
1分钟前
1分钟前
雪中发布了新的文献求助30
1分钟前
清脆大米发布了新的文献求助10
1分钟前
斯文败类应助kante采纳,获得10
1分钟前
无花果应助天大青年采纳,获得10
1分钟前
1分钟前
甜甜圆圆完成签到,获得积分10
1分钟前
1分钟前
1分钟前
kante发布了新的文献求助10
1分钟前
cille发布了新的文献求助10
1分钟前
嘟嘟发布了新的文献求助10
1分钟前
ShowMaker给学习的苹果的求助进行了留言
1分钟前
思源应助田柾国采纳,获得10
1分钟前
桐桐应助清风浮云采纳,获得10
1分钟前
2分钟前
清风浮云完成签到,获得积分10
2分钟前
kante完成签到,获得积分10
2分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150492
求助须知:如何正确求助?哪些是违规求助? 2801881
关于积分的说明 7845881
捐赠科研通 2459245
什么是DOI,文献DOI怎么找? 1309130
科研通“疑难数据库(出版商)”最低求助积分说明 628656
版权声明 601727