Structure-Activity Relationship Analysis of Analogs of Rhosin, a RhoA Inhibitor, Reveals a New Generation of Improved Antiplatelet Agents

罗亚 血小板活化 血小板 化学 凝血酶 药理学 纤溶酶原激活物抑制剂-1 小型GTPase 激活剂(遗传学) 细胞生物学 生物化学 信号转导 纤溶酶原激活剂 生物 医学 受体 免疫学 内科学
作者
Akhila Dandamudi,William Seibel,Huzoor Akbar,Yi Zheng
出处
期刊:Blood [American Society of Hematology]
卷期号:138 (Supplement 1): 3989-3989
标识
DOI:10.1182/blood-2021-153108
摘要

Abstract Platelet activation and aggregation play a key role in mediating hemostasis and thrombosis. The antiplatelet therapies currently available in the market are associated with a high risk of hemorrhage and are mostly irreversible in suppressing platelet activity; hence, there is a need to develop better therapeutic agents. Previous genetic and pharmacological studies have implicated the small GTPase RhoA in multiple platelet signaling pathways. We devised a lead RhoA activity-specific inhibitor, Rhosin/G04, based on the structure-function relationship of RhoA interaction with its activator, guanine nucleotide exchange factor (GEF) (Figure 1A). Rhosin/G04 binds to RhoA directly with micromolar affinity at a surface groove that is essential for GEF recognition and blocks GEF-mediated GTP loading to RhoA. Rhosin/G04 inhibits platelet spreading on fibrinogen and thrombin-induced platelet aggregation, mimicking effects of RhoA gene targeting. In the current work, we have utilized the inhibitory activity of G04 for platelet activation and its biochemical activity to define its structure-activity relationship (SAR) and to understand its mechanism of action in an effort to improve efficacy and druggability. The structure of G04 in a groove of RhoA interaction was hypothesized based on the docking studies using Molsoft ICM-Pro. Cincinnati Children's Hospital Medical Center's compound library of over 360,000 chemicals was scanned for G04 analogs by similarity and substructure searches. In the initial screen, a human platelet aggregation assay was performed at both a low concentration (1 µg/ml) and a high concentration (5 µg/ml) of collagen. The first round similarity search resulted in a set of 7 compounds (Set-1), from which, compound 177629 showed significantly enhanced potency relative to G04 (Figure 1B). The second round of similarity searches for compounds more closely related to 177629 (Set-2) identified 14 compounds. The third-round search for other related compounds (Set-3) led to 9 additional compounds that add to the understanding of the SAR. The compounds that showed enhanced antiplatelet activity were examined for their potency and selectivity in in vitro biochemical binding assays and in suppressing RhoA-GTP formation and downstream phosphorylation of myosin light chain (p-MLC) signaling in platelets. The active compounds were further examined for their anti-platelet activities under diverse stimuli including thrombin, ADP, U46619 (a stable thromboxane receptor agonist), and arachidonic acid. The most active compounds from Set-1, Set-2, and Set-3 inhibited platelet aggregation by at least 70% and showed IC 50 values below 6 µM. Of these compounds, 12 showed significantly greater potency than the initial compound, G04. The most active compounds were 177618, 177619, 177628, 177629, 177633, and 177634. These compounds specifically inhibited RhoA activity and blocked p-MLC. SAR analyses led us to believe that the quinoline is optimally attached to the hydrazine at the 4-position. The halogen (choloro- or trifluoromethyl-) substitution at the 7- or 8- position improved activity, and the 7- position may be slightly favored. The aryl group is considerably variable with similar potency between the indole, methylphenyl, and dichlorophenyl- groups. Rhosin/G04 is the R enantiomer (i.e. Rhosin is R-G04), so its S enantiomer, S-G04 was also evaluated (Figure 1C). S-G04 is significantly more potent than R-G04 in inhibiting collagen-stimulated RhoA-GTP formation and aggregation of platelets, and its effect is completely reversible by washing the platelets. Finally, R-G04 and S-G04 showed differential inhibition of arachidonic acid and U46619 stimulated primary and secondary aggregation, highlighting the potential utilities of the inhibitors in dissecting different platelet activation mechanisms. S-G04 is active in inhibiting thrombin, ADP, U46619, and arachidonic acid-mediated platelet activation at submicromolar concentration, suggesting a broad role of RhoA signaling in integrating platelet signal cross talk. In summary, evaluation of Rhosin/R-G04 analogs in a platelet activity screen identified a new generation of improved small-molecule RhoA inhibitors, including an enantiomer with significantly improved efficacy. These analog studies of novel anti-platelet agents provide a new approach to effectively and reversibly manipulate platelet activities. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Harlotte发布了新的文献求助10
刚刚
刚刚
潦草发布了新的文献求助10
刚刚
丘比特应助Ll采纳,获得10
1秒前
1秒前
yu完成签到 ,获得积分10
1秒前
小蘑菇应助zzznznnn采纳,获得10
1秒前
Orange应助俊秀的白猫采纳,获得30
2秒前
深情安青应助小可采纳,获得10
2秒前
2秒前
情怀应助pearl采纳,获得10
2秒前
3秒前
所所应助cybbbbbb采纳,获得10
3秒前
果汁发布了新的文献求助10
3秒前
4秒前
4秒前
Lucas应助柚子采纳,获得10
4秒前
MADKAI发布了新的文献求助10
4秒前
5秒前
爆米花应助咕咕咕采纳,获得10
5秒前
zxy发布了新的文献求助10
5秒前
6秒前
醉人的仔发布了新的文献求助10
6秒前
daguan完成签到,获得积分10
6秒前
桐桐应助nikai采纳,获得10
6秒前
7秒前
8秒前
123完成签到,获得积分10
8秒前
善良香岚发布了新的文献求助10
8秒前
9秒前
9秒前
444完成签到,获得积分10
9秒前
任一发布了新的文献求助30
9秒前
莉莉发布了新的文献求助10
10秒前
Zoe发布了新的文献求助10
10秒前
Hover完成签到,获得积分10
10秒前
自然的茉莉完成签到,获得积分10
11秒前
11秒前
Mandy完成签到,获得积分10
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759