荧光粉
显色指数
发光二极管
材料科学
LED灯
光电子学
渲染(计算机图形)
工艺工程
计算机科学
光学
计算机图形学(图像)
物理
工程类
作者
Yunping Huang,Theodore A. Cohen,Christine K. Luscombe
标识
DOI:10.1002/adsu.202000300
摘要
Abstract Light‐emitting diodes (LEDs) are a lighting technology with a huge and ascending market. Typically, LED backlights are often paired with inorganic phosphors made from rare‐earth elements (REEs) to tune the emission lineshapes for different applications. However, REE production is a resource‐intensive process with many negative environmental impacts. Herein organic hybrid LEDs are developed using organic dyes synthesized from an abundant and non‐toxic natural product (theobromine) to replace REE phosphors. The resulted hybrid LED generates continuous emission from 400–740 nm, resulting in a high color rendering index (the current industry standard) of 90 and a color fidelity index (the most advanced and comprehensive standard) of 92, challenging commercial LEDs based on REE phosphors. In addition, the light‐converting composite is made from 99 wt% SBS, an inexpensive industrial polymer, and 1 wt% theobromine dyes, reducing the cost of the light converter to ¢1.30 for a 1 W LED, compared to approximately ¢ 19.2 of commercial products. The light converting efficiency of the dye‐SBS composite is 82%. Excited state kinetics experiments are also conducted to provide guidance to further increase the light‐converting efficiency of the theobromine dyes while maintaining excellent color rendering and fidelity.
科研通智能强力驱动
Strongly Powered by AbleSci AI