Syndrome-aware Herb Recommendation with Multi-Graph Convolution Network

嵌入 草本植物 计算机科学 图形 药方 人工智能 医学 自然语言处理 理论计算机科学 机器学习 传统医学 草药 药理学
作者
Yuanyuan Jin,Wei Zhang,Xiangnan He,Xinyu Wang,Xiaoling Wang
标识
DOI:10.1109/icde48307.2020.00020
摘要

Herb recommendation plays a crucial role in the therapeutic process of Traditional Chinese Medicine (TCM), which aims to recommend a set of herbs to treat the symptoms of a patient. While several machine learning methods have been developed for herb recommendation, they are limited in modeling only the interactions between herbs and symptoms, and ignoring the intermediate process of syndrome induction. When performing TCM diagnostics, an experienced doctor typically induces syndromes from the patient's symptoms and then suggests herbs based on the induced syndromes. As such, we believe the induction of syndromes - an overall description of the symptoms - is important for herb recommendation and should be properly handled. However, due to the ambiguity and complexity of syndrome induction, most prescriptions lack the explicit ground truth of syndromes. In this paper, we propose a new method that takes the implicit syndrome induction process into account for herb recommendation. Specifically, given a set of symptoms to treat, we aim to generate an overall syndrome representation by effectively fusing the embeddings of all the symptoms in the set, so as to mimic how a doctor induces the syndromes. Towards symptom embedding learning, we additionally construct a symptom-symptom graph from the input prescriptions for capturing the relations (cooccurred patterns) between symptoms; we then build graph convolution networks (GCNs) on both symptom-symptom and symptom-herb graphs to learn symptom embedding. Similarly, we construct a herb-herb graph and build GCNs on both herbherb and symptom-herb graphs to learn herb embedding, which is finally interacted with the syndrome representation to predict the scores of herbs. The advantage of such a Multi-Graph GCN architecture is that more comprehensive representations can be obtained for symptoms and herbs. We conduct extensive experiments on a public TCM dataset, demonstrating significant improvements over state-of-the-art herb recommendation methods. Further studies justify the effectiveness of our design of syndrome representation and multiple graphs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈豆豆完成签到 ,获得积分10
刚刚
搜集达人应助灰灰采纳,获得10
刚刚
刚刚
felix发布了新的文献求助10
1秒前
大个应助粥粥顺利采纳,获得10
1秒前
爱听歌的依秋完成签到,获得积分10
2秒前
one完成签到 ,获得积分10
2秒前
2秒前
zzzzz完成签到,获得积分10
2秒前
anchen完成签到 ,获得积分10
2秒前
小水完成签到,获得积分10
3秒前
华仔应助明亮的尔竹采纳,获得10
3秒前
zz完成签到,获得积分10
5秒前
裴南苇完成签到 ,获得积分10
5秒前
科研通AI5应助动听的时光采纳,获得10
5秒前
灰灰完成签到,获得积分10
6秒前
平常的雁凡完成签到,获得积分10
6秒前
178181发布了新的文献求助10
6秒前
体贴的乐松完成签到,获得积分10
6秒前
jcduoduo完成签到,获得积分10
7秒前
7秒前
科研韭菜完成签到 ,获得积分10
7秒前
愉快的小鸽子完成签到,获得积分10
8秒前
8秒前
天天快乐应助周周采纳,获得10
10秒前
10秒前
nxett完成签到,获得积分10
10秒前
11秒前
欢歌笑语完成签到,获得积分10
11秒前
DXDXJX完成签到,获得积分10
11秒前
12秒前
研研研发布了新的文献求助30
12秒前
gomm完成签到,获得积分10
13秒前
13秒前
妮妮完成签到,获得积分10
14秒前
SYLH应助exosome采纳,获得10
14秒前
14秒前
坚果完成签到 ,获得积分10
14秒前
14秒前
轻松的百川完成签到,获得积分20
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3510918
求助须知:如何正确求助?哪些是违规求助? 3093683
关于积分的说明 9218379
捐赠科研通 2788064
什么是DOI,文献DOI怎么找? 1529995
邀请新用户注册赠送积分活动 710681
科研通“疑难数据库(出版商)”最低求助积分说明 706311