Automating Model Generation for Image-Based Cardiac Flow Simulation

计算机科学 分割 卷积神经网络 人工智能 计算流体力学 多边形网格 图像分割 医学影像学 水准点(测量) 计算机视觉 深度学习 管道(软件) 工程类 计算机图形学(图像) 地理 程序设计语言 航空航天工程 大地测量学
作者
Fanwei Kong,Shawn C. Shadden
出处
期刊:Journal of biomechanical engineering [ASME International]
卷期号:142 (11) 被引量:24
标识
DOI:10.1115/1.4048032
摘要

Abstract Computational fluid dynamics (CFD) modeling of left ventricle (LV) flow combined with patient medical imaging data has shown great potential in obtaining patient-specific hemodynamics information for functional assessment of the heart. A typical model construction pipeline usually starts with segmentation of the LV by manual delineation followed by mesh generation and registration techniques using separate software tools. However, such approaches usually require significant time and human efforts in the model generation process, limiting large-scale analysis. In this study, we propose an approach toward fully automating the model generation process for CFD simulation of LV flow to significantly reduce LV CFD model generation time. Our modeling framework leverages a novel combination of techniques including deep-learning based segmentation, geometry processing, and image registration to reliably reconstruct CFD-suitable LV models with little-to-no user intervention.1 We utilized an ensemble of two-dimensional (2D) convolutional neural networks (CNNs) for automatic segmentation of cardiac structures from three-dimensional (3D) patient images and our segmentation approach outperformed recent state-of-the-art segmentation techniques when evaluated on benchmark data containing both magnetic resonance (MR) and computed tomography(CT) cardiac scans. We demonstrate that through a combination of segmentation and geometry processing, we were able to robustly create CFD-suitable LV meshes from segmentations for 78 out of 80 test cases. Although the focus on this study is on image-to-mesh generation, we demonstrate the feasibility of this framework in supporting LV hemodynamics modeling by performing CFD simulations from two representative time-resolved patient-specific image datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助pan采纳,获得10
1秒前
英俊的铭应助源源采纳,获得10
1秒前
2秒前
HAO发布了新的文献求助10
2秒前
无限猕猴桃完成签到,获得积分10
2秒前
薛之谦发布了新的文献求助10
5秒前
也好发布了新的文献求助30
5秒前
思源应助白白嫩嫩采纳,获得10
5秒前
丘比特应助wanfeng采纳,获得10
6秒前
9秒前
放眼天下完成签到 ,获得积分10
10秒前
陈陈完成签到 ,获得积分10
10秒前
10秒前
好困应助fanmo采纳,获得10
11秒前
12秒前
科研通AI2S应助魏1122采纳,获得10
12秒前
14秒前
15秒前
fxx发布了新的文献求助10
15秒前
高君奇发布了新的文献求助10
15秒前
不配.应助科研通管家采纳,获得20
16秒前
共享精神应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
脑洞疼应助科研通管家采纳,获得10
16秒前
铁路桥应助科研通管家采纳,获得10
16秒前
一一应助科研通管家采纳,获得20
16秒前
爆米花应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
深情安青应助科研通管家采纳,获得10
16秒前
小二郎应助王三采纳,获得10
16秒前
不配.应助科研通管家采纳,获得10
16秒前
宇文远锋应助科研通管家采纳,获得30
16秒前
17秒前
踏实过客完成签到 ,获得积分10
17秒前
17秒前
18秒前
HAO完成签到,获得积分10
19秒前
可爱以松完成签到,获得积分10
19秒前
LLLZX发布了新的文献求助10
22秒前
yyy完成签到,获得积分10
23秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206956
求助须知:如何正确求助?哪些是违规求助? 2856304
关于积分的说明 8104016
捐赠科研通 2521498
什么是DOI,文献DOI怎么找? 1354593
科研通“疑难数据库(出版商)”最低求助积分说明 642050
邀请新用户注册赠送积分活动 613292