Automating Model Generation for Image-Based Cardiac Flow Simulation

计算机科学 分割 卷积神经网络 人工智能 计算流体力学 多边形网格 图像分割 医学影像学 水准点(测量) 计算机视觉 深度学习 管道(软件) 工程类 计算机图形学(图像) 地理 程序设计语言 航空航天工程 大地测量学
作者
Fanwei Kong,Shawn C. Shadden
出处
期刊:Journal of biomechanical engineering [ASM International]
卷期号:142 (11) 被引量:24
标识
DOI:10.1115/1.4048032
摘要

Abstract Computational fluid dynamics (CFD) modeling of left ventricle (LV) flow combined with patient medical imaging data has shown great potential in obtaining patient-specific hemodynamics information for functional assessment of the heart. A typical model construction pipeline usually starts with segmentation of the LV by manual delineation followed by mesh generation and registration techniques using separate software tools. However, such approaches usually require significant time and human efforts in the model generation process, limiting large-scale analysis. In this study, we propose an approach toward fully automating the model generation process for CFD simulation of LV flow to significantly reduce LV CFD model generation time. Our modeling framework leverages a novel combination of techniques including deep-learning based segmentation, geometry processing, and image registration to reliably reconstruct CFD-suitable LV models with little-to-no user intervention.1 We utilized an ensemble of two-dimensional (2D) convolutional neural networks (CNNs) for automatic segmentation of cardiac structures from three-dimensional (3D) patient images and our segmentation approach outperformed recent state-of-the-art segmentation techniques when evaluated on benchmark data containing both magnetic resonance (MR) and computed tomography(CT) cardiac scans. We demonstrate that through a combination of segmentation and geometry processing, we were able to robustly create CFD-suitable LV meshes from segmentations for 78 out of 80 test cases. Although the focus on this study is on image-to-mesh generation, we demonstrate the feasibility of this framework in supporting LV hemodynamics modeling by performing CFD simulations from two representative time-resolved patient-specific image datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1sunpf完成签到,获得积分10
刚刚
刚刚
无花果应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
wen完成签到,获得积分10
1秒前
luxkex完成签到,获得积分10
1秒前
1秒前
务实大神完成签到,获得积分10
2秒前
求大佬帮助完成签到,获得积分10
2秒前
dodo应助ElbingX采纳,获得300
3秒前
4秒前
vander完成签到,获得积分10
4秒前
jam发布了新的文献求助10
4秒前
斯文败类应助livialiu采纳,获得10
4秒前
致行完成签到,获得积分10
4秒前
谭刚完成签到,获得积分20
4秒前
Yang发布了新的文献求助10
4秒前
冷静新烟完成签到,获得积分20
5秒前
SciGPT应助ok123采纳,获得10
7秒前
Su发布了新的文献求助10
7秒前
Wang完成签到,获得积分10
7秒前
wanwei完成签到,获得积分10
7秒前
香蕉静芙完成签到,获得积分20
7秒前
LCC发布了新的文献求助10
8秒前
JamesPei应助tcf采纳,获得10
8秒前
冷静新烟发布了新的文献求助10
8秒前
8秒前
木木完成签到 ,获得积分10
9秒前
10秒前
烟花应助快点毕业采纳,获得30
11秒前
郭柳含发布了新的文献求助10
11秒前
万能图书馆应助风风风采纳,获得10
12秒前
英姑应助陪你去流浪采纳,获得10
12秒前
雪白的凡灵完成签到,获得积分10
12秒前
思源应助5km采纳,获得10
12秒前
kwm关闭了kwm文献求助
13秒前
13秒前
顾矜应助123采纳,获得30
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016130
求助须知:如何正确求助?哪些是违规求助? 3556145
关于积分的说明 11320169
捐赠科研通 3289087
什么是DOI,文献DOI怎么找? 1812382
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812051