哈迪空间
数学
平方可积函数
极大函数
对偶(序理论)
操作员(生物学)
空格(标点符号)
自伴算子
纯数学
函数空间
表征(材料科学)
数学分析
希尔伯特空间
哲学
抑制因子
纳米技术
基因
化学
转录因子
材料科学
生物化学
语言学
作者
Steve Hofmann,Guozhen Lu,Dorina Mitrea,Marius Mitrea,Lixin Yan
标识
DOI:10.1090/s0065-9266-2011-00624-6
摘要
Let $X$ be a metric space with doubling measure, and $L$ be a non-negative, self-adjoint operator satisfying Davies-Gaffney bounds on $L^2(X)$. In this article the authors present a theory of Hardy and BMO spaces associated to $L$, including an atomic (or molecular) decomposition, square function characterization, and duality of Hardy and BMO spaces. Further specializing to the case that $L$ is a Schrodinger operator on $\mathbb{R}^n$ with a non-negative, locally integrable potential, the authors establish additional characterizations of such Hardy spaces in terms of maximal functions. Finally, they define Hardy spaces $H^p_L(X)$ for $p>1$, which may or may not coincide with the space $L^p(X)$, and show that they interpolate with $H^1_L(X)$ spaces by the complex method.
科研通智能强力驱动
Strongly Powered by AbleSci AI