生物
拟南芥
人口
计算机科学
基因
基因表达
噪音(视频)
RNA序列
计算生物学
生物系统
细胞
遗传学
人工智能
转录组
人口学
社会学
突变体
图像(数学)
作者
Philip Brennecke,Simon Anders,Jong Kim,Aleksandra A. Kolodziejczyk,Xiuwei Zhang,Valentina Proserpio,Bianka Baying,Vladimı́r Beneš,Sarah A. Teichmann,John C. Marioni,Marcus G. Heisler
出处
期刊:Nature Methods
[Springer Nature]
日期:2013-09-22
卷期号:10 (11): 1093-1095
被引量:1000
摘要
A statistical method that uses spike-ins to model the dependence of technical noise on transcript abundance in single-cell RNA-seq experiments allows identification of genes wherein observed variability in read counts can be reliably interpreted as a signal of biological variability as opposed to the effect of technical noise. Single-cell RNA-seq can yield valuable insights about the variability within a population of seemingly homogeneous cells. We developed a quantitative statistical method to distinguish true biological variability from the high levels of technical noise in single-cell experiments. Our approach quantifies the statistical significance of observed cell-to-cell variability in expression strength on a gene-by-gene basis. We validate our approach using two independent data sets from Arabidopsis thaliana and Mus musculus.
科研通智能强力驱动
Strongly Powered by AbleSci AI