Modeling alpine grassland forage phosphorus based on hyperspectral remote sensing and a multi-factor machine learning algorithm in the east of Tibetan Plateau, China

环境科学 高原(数学) 归一化差异植被指数 植被(病理学) 农学
作者
Jinlong Gao,Baoping Meng,Tiangang Liang,Qisheng Feng,Jing Ge,Jianpeng Yin,Caixia Wu,Xia Cui,Mengjing Hou,Jie Liu,Hongjie Xie
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:147: 104-117 被引量:23
标识
DOI:10.1016/j.isprsjprs.2018.11.015
摘要

Abstract The accurate and effective retrieval of forage phosphorus (P) content can provide significant information for the management of pastoral agriculture and grazing livestock. In this study, we constructed 39 models to estimate the forage P of alpine grassland in the east of Tibetan Plateau based on hyperspectral remote sensing and multiple factors (topography, soil, vegetation and meteorology) using a machine learning algorithm. The results show that (1) first derivative (FD) and continuum removal (CR) spectra can retrieve more feature bands that are mainly located in the near infrared (NIR) and shortwave infrared (SWIR) regions than log transformed (Log (1/R)) and original (OR) spectra for the forage P estimation; (2) in terms of the model precision, the combination of important bands (IBs) and important factors (longitude and monthly mean temperature) increase the accuracy of forage P estimation as compared with the models that used IBs alone; and (3) considering the precision, stability and simplicity of the model comprehensively, the FD-IBs + support vector machine (SVM) model is the optimum forage P inversion model, which presents coefficient of determination (R2) and root mean squared error (RMSE) values of 0.67 and 0.0472%, respectively, and standard deviations (SDs) of 0.2386 and 0.0050%, respectively. This model can account for 88% of the variation of forage P in alpine grassland. This study demonstrates the importance of using a multi-factor modeling approach and spectral transformation techniques for estimating the forage P of grasslands and provides a scientific basis for the reasonable use and management of alpine grassland resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
干净柏柳完成签到 ,获得积分10
1秒前
贪玩小小完成签到 ,获得积分10
1秒前
信江书院完成签到,获得积分10
2秒前
丘比特应助Zzk采纳,获得10
2秒前
科研通AI5应助jingcheng采纳,获得10
2秒前
酷波er应助土豆采纳,获得30
3秒前
可爱的函函应助xkhxh采纳,获得10
3秒前
六个核桃手拉手完成签到 ,获得积分10
4秒前
4秒前
贪玩小蘑菇完成签到 ,获得积分10
4秒前
7秒前
逢时发布了新的文献求助30
7秒前
舒服的如蓉完成签到,获得积分10
8秒前
8秒前
罗伯特骚塞完成签到,获得积分10
8秒前
wp2002完成签到 ,获得积分10
9秒前
Herbert应助changl2023采纳,获得60
9秒前
9秒前
田七一发布了新的文献求助10
9秒前
哈哈哈哈哈完成签到,获得积分10
10秒前
cquank发布了新的文献求助10
10秒前
蟒玉朝天完成签到 ,获得积分10
10秒前
12秒前
12秒前
13秒前
13秒前
bluesleep完成签到,获得积分10
14秒前
14秒前
张112233完成签到,获得积分10
14秒前
ryd完成签到,获得积分10
15秒前
jiejie完成签到,获得积分10
15秒前
16秒前
Anata完成签到,获得积分10
16秒前
阿罗发布了新的文献求助10
16秒前
peach发布了新的文献求助10
16秒前
ZHOUZHEN完成签到,获得积分10
17秒前
激动的访文应助小蓝采纳,获得10
17秒前
土豆发布了新的文献求助30
17秒前
18秒前
颛颛发布了新的文献求助10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3512007
求助须知:如何正确求助?哪些是违规求助? 3094539
关于积分的说明 9223579
捐赠科研通 2789383
什么是DOI,文献DOI怎么找? 1530667
邀请新用户注册赠送积分活动 711041
科研通“疑难数据库(出版商)”最低求助积分说明 706513