Serum Metabolomic Profiles Identify ER-Positive Early Breast Cancer Patients at Increased Risk of Disease Recurrence in a Multicenter Population

医学 乳腺癌 疾病 癌症 肿瘤科 人口 多中心研究 内科学 妇科 环境卫生 随机对照试验
作者
Christopher D. Hart,Alessia Vignoli,Leonardo Tenori,Gemma Leonora Uy,Ta Van To,Clement Adebamowo,Syed Mozammel Hossain,Laura Biganzoli,Emanuela Risi,Richard R. Love,Claudio Luchinat,Angelo Di Leo
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:23 (6): 1422-1431 被引量:71
标识
DOI:10.1158/1078-0432.ccr-16-1153
摘要

Abstract Purpose: Detecting signals of micrometastatic disease in patients with early breast cancer (EBC) could improve risk stratification and allow better tailoring of adjuvant therapies. We previously showed that postoperative serum metabolomic profiles were predictive of relapse in a single-center cohort of estrogen receptor (ER)–negative EBC patients. Here, we investigated this further using preoperative serum samples from ER-positive, premenopausal women with EBC who were enrolled in an international phase III trial. Experimental Design: Proton nuclear magnetic resonance (NMR) spectroscopy of 590 EBC samples (319 with relapse or ≥6 years clinical follow-up) and 109 metastatic breast cancer (MBC) samples was performed. A Random Forest (RF) classification model was built using a training set of 85 EBC and all MBC samples. The model was then applied to a test set of 234 EBC samples, and a risk of recurrence score was generated on the basis of the likelihood of the sample being misclassified as metastatic. Results: In the training set, the RF model separated EBC from MBC with a discrimination accuracy of 84.9%. In the test set, the RF recurrence risk score correlated with relapse, with an AUC of 0.747 in ROC analysis. Accuracy was maximized at 71.3% (sensitivity, 70.8%; specificity, 71.4%). The model performed independently of age, tumor size, grade, HER2 status and nodal status, and also of Adjuvant! Online risk of relapse score. Conclusions: In a multicenter group of EBC patients, we developed a model based on preoperative serum metabolomic profiles that was prognostic for disease recurrence, independent of traditional clinicopathologic risk factors. Clin Cancer Res; 23(6); 1422–31. ©2017 AACR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ava应助玉玉采纳,获得10
刚刚
刚刚
陶醉小土豆完成签到 ,获得积分10
1秒前
良辰应助junmin采纳,获得10
1秒前
想学发电机完成签到,获得积分10
3秒前
吃书的猪完成签到,获得积分10
3秒前
4秒前
江念完成签到,获得积分10
7秒前
Ava应助夜之枫采纳,获得10
8秒前
摆烂发布了新的文献求助10
11秒前
histamin完成签到,获得积分10
13秒前
小恶于完成签到 ,获得积分10
13秒前
14秒前
ok完成签到,获得积分10
15秒前
幼萱完成签到,获得积分10
16秒前
17秒前
兴奋硬币发布了新的文献求助10
18秒前
15966014069完成签到,获得积分20
20秒前
20秒前
20秒前
深情安青应助玉玉采纳,获得10
21秒前
22秒前
天真无招完成签到 ,获得积分10
22秒前
23秒前
夜之枫发布了新的文献求助10
24秒前
SciGPT应助小熊采纳,获得10
30秒前
神明发布了新的文献求助10
30秒前
31秒前
31秒前
31秒前
携书剑路茫然完成签到,获得积分10
31秒前
32秒前
32秒前
情怀应助拼搏的绿旋采纳,获得10
33秒前
ok发布了新的文献求助10
35秒前
36秒前
kirto发布了新的文献求助10
36秒前
安有才发布了新的文献求助10
36秒前
Fox发布了新的文献求助10
39秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Keywords: explanatory textual sequences, motivation, self-determination, academic performance, math, artificial intelligence 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267506
求助须知:如何正确求助?哪些是违规求助? 2906911
关于积分的说明 8340161
捐赠科研通 2577520
什么是DOI,文献DOI怎么找? 1401068
科研通“疑难数据库(出版商)”最低求助积分说明 654998
邀请新用户注册赠送积分活动 633947