Patient factors and quality of life outcomes differ among four subgroups of oncology patients based on symptom occurrence

医学 生活质量(医疗保健) 内科学 潜在类模型 共病 癌症 肿瘤科 数学 统计 护理部
作者
Guro Lindviksmoen Astrup,Kristin Hofsø,Kristin Bjordal,Marianne G. Guren,Ingvild Vistad,Bruce A. Cooper,Christine Miaskowski,Tone Rustøen
出处
期刊:Acta Oncologica [Informa]
卷期号:56 (3): 462-470 被引量:43
标识
DOI:10.1080/0284186x.2016.1273546
摘要

Reviews of the literature on symptoms in oncology patients undergoing curative treatment, as well as patients receiving palliative care, suggest that they experience multiple, co-occurring symptoms and side effects.The purposes of this study were to determine if subgroups of oncology patients could be identified based on symptom occurrence rates and if these subgroups differed on a number of demographic and clinical characteristics, as well as on quality of life (QoL) outcomes.Latent class analysis (LCA) was used to identify subgroups (i.e. latent classes) of patients with distinct symptom experiences based on the occurrence rates for the 13 most common symptoms from the Memorial Symptom Assessment Scale.In total, 534 patients with breast, head and neck, colorectal, or ovarian cancer participated. Four latent classes of patients were identified based on probability of symptom occurrence: all low class [i.e. low probability for all symptoms (n = 152)], all high class (n = 149), high psychological class (n = 121), and low psychological class (n = 112). Patients in the all high class were significantly younger compared with patients in the all low class. Furthermore, compared to the other three classes, patients in the all high class had lower functional status and higher comorbidity scores, and reported poorer QoL scores. Patients in the high and low psychological classes had a moderate probability of reporting physical symptoms. Patients in the low psychological class reported a higher number of symptoms, a lower functional status, and poorer physical and total QoL scores.Distinct subgroups of oncology patients can be identified based on symptom occurrence rates. Patient characteristics that are associated with these subgroups can be used to identify patients who are at greater risk for multiple co-occurring symptoms and diminished QoL, so that these patients can be offered appropriate symptom management interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SXYYXS发布了新的文献求助50
4秒前
科研通AI2S应助诩阽采纳,获得10
4秒前
轩轩完成签到,获得积分20
4秒前
ypeng完成签到,获得积分10
5秒前
孙小头发布了新的文献求助10
6秒前
Zoe完成签到,获得积分10
9秒前
9秒前
复杂函完成签到,获得积分10
10秒前
丘比特应助SXYYXS采纳,获得10
10秒前
可爱的函函应助ai zs采纳,获得10
11秒前
孙小头完成签到,获得积分10
11秒前
13秒前
kk发布了新的文献求助10
15秒前
顾矜应助fbbggb采纳,获得10
16秒前
微风完成签到,获得积分10
17秒前
19秒前
21秒前
桐桐应助福娃采纳,获得10
23秒前
JamesPei应助欢喜的荔枝采纳,获得10
23秒前
王十二完成签到,获得积分10
23秒前
24秒前
豆子发布了新的文献求助10
24秒前
25秒前
ding应助skmksd采纳,获得10
26秒前
天宇发布了新的文献求助10
28秒前
卡卡完成签到 ,获得积分10
28秒前
完蛋发布了新的文献求助10
28秒前
拉布拉多浣熊完成签到,获得积分10
29秒前
生动的青烟完成签到,获得积分10
30秒前
大力完成签到,获得积分10
32秒前
fbbggb发布了新的文献求助10
32秒前
35秒前
邓德亨卓汲完成签到,获得积分10
36秒前
37秒前
37秒前
38秒前
沐沐发布了新的文献求助10
42秒前
SXYYXS发布了新的文献求助10
42秒前
白苹果完成签到 ,获得积分10
42秒前
科目三应助夏夏采纳,获得10
43秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124628
求助须知:如何正确求助?哪些是违规求助? 2774894
关于积分的说明 7724629
捐赠科研通 2430451
什么是DOI,文献DOI怎么找? 1291102
科研通“疑难数据库(出版商)”最低求助积分说明 622063
版权声明 600323