Collagen-PVA aligned nanofiber on collagen sponge as bi-layered scaffold for surface cartilage repair

极限抗拉强度 材料科学 复合材料 软骨 纳米纤维 软骨细胞 复合数 细胞外基质 糖胺聚糖 脚手架 海绵 生物医学工程 解剖 化学 医学 生物化学 生物 植物
作者
Hsin‐Yi Lin,Wen‐Chi Tsai,Shih-Hsing Chang
出处
期刊:Journal of Biomaterials Science-polymer Edition [Informa]
卷期号:28 (7): 664-678 被引量:44
标识
DOI:10.1080/09205063.2017.1295507
摘要

Researchers have made bi-layered scaffolds but mostly for osteochondral repairs. The anatomic structure of human cartilage has different zones and that each has varying matrix morphology and mechanical properties is often overlooked. Two bi-layered collagen-based composites were made to replicate the superficial and transitional zones of an articular cartilage. Aligned and random collagen-PVA nanofibers were electrospun onto a freeze-dried collagen sponge to make the aligned and random composites, respectively. The morphology, swelling ratio, degradation and tensile properties of the two composites were examined. Primary porcine chondrocytes were cultured on the composites for three weeks and their proliferation and secretion of glycosaminoglycan (GAG) and type II collagen were measured. The influences of the cell culture on the tensile properties of the composites were studied. The nanofiber layer remained adhered to the sponge after three weeks of cell culture. Both composites lost 30–35% of their total weight in a saline buffer after three weeks. The tensile strength and Young's modulus of both composites increased after three weeks of chondrocyte culture (p < 0.05). The aligned composite with extracellular matrix deposition had a Young's modulus (0.35 MPa) similar to that of articular cartilage reported in literature (0.36–0.8 MPa). The chondrocytes on both aligned and random composites proliferated and secreted similar amounts of GAG and type II collagen. They were seen embedded in lacunae after three weeks. The aligned composite may be more suitable for articular cartilage repair because of the higher tensile strength from the aligned nanofibers on the surface that can better resist wear.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得20
2秒前
英姑应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得30
2秒前
Akim应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
姬昂完成签到 ,获得积分10
3秒前
4秒前
5秒前
FashionBoy应助鲜艳的寄松采纳,获得10
5秒前
顾矜应助曦曦采纳,获得30
5秒前
毛豆应助帅气念梦采纳,获得30
6秒前
aniver完成签到 ,获得积分10
6秒前
9秒前
11秒前
GGBOND完成签到,获得积分10
11秒前
勤奋幻柏完成签到,获得积分10
12秒前
kk完成签到,获得积分10
14秒前
16秒前
16秒前
千逐发布了新的文献求助10
19秒前
zero37完成签到,获得积分10
19秒前
20秒前
wp048006完成签到,获得积分10
21秒前
阿航完成签到,获得积分10
21秒前
22秒前
AA完成签到 ,获得积分10
22秒前
chenchen发布了新的文献求助10
23秒前
科目三应助米斯特刘采纳,获得10
24秒前
26秒前
陈海明完成签到,获得积分10
27秒前
科研通AI2S应助苻尔曼采纳,获得10
28秒前
活泼的莫茗应助苻尔曼采纳,获得10
28秒前
ChouNen完成签到,获得积分10
28秒前
小巧问芙完成签到 ,获得积分10
29秒前
千逐完成签到,获得积分10
31秒前
cuc发布了新的文献求助10
32秒前
研友_LMBlAn发布了新的文献求助10
32秒前
甜甜奇异果完成签到,获得积分10
34秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312191
求助须知:如何正确求助?哪些是违规求助? 2944810
关于积分的说明 8521543
捐赠科研通 2620532
什么是DOI,文献DOI怎么找? 1432870
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650115