吸附
微塑料
环境化学
解吸
化学
壬基酚
聚丙烯
氢键
化学工程
吸附
有机化学
分子
工程类
作者
Shuiyuan He,Siyang Sun,Honghai Xue,Chunli Kang,Shuyi Yu
标识
DOI:10.1016/j.envres.2023.115615
摘要
Plastics in the environment undergo various aging effects. Due to the changes in physical and chemical properties, the sorption behavior of aged microplastics (MPs) for pollutants differs from that of pristine MPs. In this paper, the most common disposable polypropylene (PP) rice box was used as the source of MPs to study the sorption and desorption behavior of nonylphenol (NP) on pristine and naturally aged PPs in summer and winter. The results show that summer-aged PP has more obvious property changes than winter-aged PP. The equilibrium sorption amount of NP on PP is summer-aged PP (477.08 μg/g) > winter-aged PP (407.14 μg/g) > pristine PP (389.29 μg/g). The sorption mechanism includes the partition effect, van der Waals forces, hydrogen bonds and hydrophobic interaction, among which chemical sorption (hydrogen bonding) dominates the sorption; moreover, partition also plays an important role in this process. Aged MPs' more robust sorption capacity is attributed to the larger specific surface area, stronger polarity and more oxygen-containing functional groups on the surface that are conducive to forming hydrogen bonds with NP. Desorption of NP in the simulated intestinal fluid is significant owning to intestinal micelles' presence: summer-aged PP (300.52 μg/g) > winter-aged PP (291.08 μg/g) > pristine PP (287.12 μg/g). Hence, aged PP presents a more vital ecological risk.
科研通智能强力驱动
Strongly Powered by AbleSci AI