Tough-interface-enabled stretchable electronics using non-stretchable polymer semiconductors and conductors

材料科学 可伸缩电子设备 薄膜 复合材料 聚合物 柔性电子器件 半导体 基质(水族馆) 韧性 图层(电子) 脆性 数码产品 纳米技术 光电子学 化学 物理化学 地质学 海洋学
作者
Jiheong Kang,Jaewan Mun,Yu Zheng,Masato Koizumi,Naoji Matsuhisa,Hung‐Chin Wu,Shucheng Chen,Jeffrey B.‐H. Tok,Gae Hwang Lee,Lihua Jin,Zhenan Bao
出处
期刊:Nature Nanotechnology [Springer Nature]
卷期号:17 (12): 1265-1271 被引量:42
标识
DOI:10.1038/s41565-022-01246-6
摘要

Semiconducting polymer thin films are essential elements of soft electronics for both wearable and biomedical applications1-11. However, high-mobility semiconducting polymers are usually brittle and can be easily fractured under small strains (<10%)12-14. Recently, the improved intrinsic mechanical properties of semiconducting polymer films have been reported through molecular design15-18 and nanoconfinement19. Here we show that engineering the interfacial properties between a semiconducting thin film and a substrate can notably delay microcrack formation in the film. We present a universal design strategy that involves covalently bonding a dissipative interfacial polymer layer, consisting of dynamic non-covalent crosslinks, between a semiconducting thin film and a substrate. This enables high interfacial toughness between the layers, suppression of delamination and delocalization of strain. As a result, crack initiation and propagation are notably delayed to much higher strains. Specifically, the crack-onset strain of a high-mobility semiconducting polymer thin film improved from 30% to 110% strain without any noticeable microcracks. Despite the presence of a large mismatch in strain between the plastic semiconducting thin film and elastic substrate after unloading, the tough interface layer helped maintain bonding and exceptional cyclic durability and robustness. Furthermore, we found that our interfacial layer reduces the mismatch of thermal expansion coefficients between the different layers. This approach can improve the crack-onset strain of various semiconducting polymers, conducting polymers and even metal thin films.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菠菜发布了新的文献求助10
刚刚
1秒前
qiuer0011完成签到,获得积分10
1秒前
小小小完成签到,获得积分10
2秒前
动点子智慧完成签到,获得积分10
2秒前
3秒前
odell完成签到,获得积分10
3秒前
害羞的裘完成签到 ,获得积分10
3秒前
mj发布了新的文献求助10
4秒前
虚幻的海安完成签到,获得积分10
4秒前
碧蓝玉米发布了新的文献求助10
4秒前
呼噜完成签到,获得积分10
5秒前
ysy完成签到,获得积分10
5秒前
会飞的鱼完成签到,获得积分10
5秒前
6秒前
6秒前
ugliest完成签到,获得积分20
6秒前
Sophie的四月物语完成签到 ,获得积分20
7秒前
开放又亦发布了新的文献求助10
7秒前
小如要努力完成签到,获得积分10
7秒前
傲娇颖完成签到,获得积分10
8秒前
kol完成签到,获得积分10
8秒前
明亮寻绿发布了新的文献求助10
9秒前
十里桃花不徘徊完成签到,获得积分10
9秒前
Ava应助like采纳,获得10
9秒前
繁荣的映雁完成签到,获得积分10
10秒前
jayus完成签到,获得积分10
11秒前
魔力巴啦啦完成签到 ,获得积分10
12秒前
12秒前
GreenDuane完成签到 ,获得积分0
12秒前
怡心亭发布了新的文献求助20
13秒前
13秒前
Shan5完成签到,获得积分10
13秒前
执着夏山完成签到,获得积分10
15秒前
小灰灰完成签到 ,获得积分10
16秒前
16秒前
17秒前
未语的阳光完成签到 ,获得积分10
17秒前
mhl11完成签到,获得积分10
17秒前
pphe发布了新的文献求助10
18秒前
高分求助中
Evolution 10000
CANCER DISCOVERY癌症研究的新前沿:中国科研领军人物的创新构想 中国专刊 500
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158693
求助须知:如何正确求助?哪些是违规求助? 2809927
关于积分的说明 7884596
捐赠科研通 2468681
什么是DOI,文献DOI怎么找? 1314374
科研通“疑难数据库(出版商)”最低求助积分说明 630601
版权声明 602012