Multimodal ensemble model for Alzheimer's disease conversion prediction from Early Mild Cognitive Impairment subjects

随机森林 计算机科学 磁共振弥散成像 人工智能 痴呆 卷积神经网络 神经影像学 认知障碍 模式识别(心理学) 认知 医学 疾病 磁共振成像 病理 精神科 放射科
作者
Matthew Velazquez,Yugyung Lee
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:151: 106201-106201 被引量:5
标识
DOI:10.1016/j.compbiomed.2022.106201
摘要

Alzheimer's Disease (AD) is the most common type of dementia. Predicting the conversion to Alzheimer's from the mild cognitive impairment (MCI) stage is a complex problem that has been studied extensively. This study centers on individualized EMCI (the earliest MCI subset) to AD conversion prediction on multimodal data such as diffusion tensor imaging (DTI) scans and electronic health records (EHR) for their patients using the combination of both a balanced random forest model alongside a convolutional neural network (CNN) model. Our random forest model leverages EHR's patient biometric and neuropsychiatric test score features, while our CNN model uses the patient's diffusion tensor imaging (DTI) scans for conversion prediction. To accomplish this, 383 Early Mild Cognitive Impairment (EMCI) patients were collected from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Within this set, 49 patients would eventually convert to AD (EMCI_C), whereas the remaining 335 did not convert (EMCI_NC). For the EHR-based classifier, 288 patients were used to train the random forest model, with 95 set aside for testing. For the CNN classifier, 405 DTI images were collected across 90 distinct patients. Nine clinical features were selected to be combined with the visual predictor. Due to the imbalanced classes, oversampling was performed for the clinical features and augmentation for the DTI images. A grid search algorithm is also used to determine the ideal weighting between our two models. Our results indicate that an ensemble model was effective (98.81% accuracy) at EMCI to AD conversion prediction. Additionally, our ensemble model provides explainability as feature importance can be assessed at both the model and individual prediction levels. Therefore, this ensemble model could serve as a diagnostic support tool or a means for identifying clinical trial candidates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助nanjiren采纳,获得30
1秒前
2秒前
2秒前
小涂大大完成签到,获得积分10
2秒前
科目三应助晶晶采纳,获得10
2秒前
科研通AI5应助无限小霜采纳,获得10
3秒前
彼岸发布了新的文献求助10
4秒前
Nzee完成签到,获得积分10
4秒前
4秒前
5秒前
炒米粉完成签到,获得积分10
5秒前
5秒前
zzxcc发布了新的文献求助10
5秒前
ybwei2008_163发布了新的文献求助10
6秒前
动漫大师发布了新的文献求助10
6秒前
小白发布了新的文献求助10
6秒前
平安顺遂发布了新的文献求助10
6秒前
快乐曼荷完成签到,获得积分10
6秒前
wary完成签到,获得积分10
7秒前
劲秉应助hhh采纳,获得10
7秒前
小新发布了新的文献求助10
8秒前
8秒前
ding应助smile采纳,获得10
8秒前
一只好果子完成签到,获得积分20
9秒前
转圈圈发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
微风完成签到 ,获得积分10
9秒前
开朗寻凝发布了新的文献求助10
9秒前
10秒前
10秒前
安安完成签到,获得积分10
11秒前
方星完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
甜蜜的老五完成签到,获得积分10
12秒前
wary发布了新的文献求助10
12秒前
12秒前
zss关闭了zss文献求助
12秒前
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3663432
求助须知:如何正确求助?哪些是违规求助? 3223996
关于积分的说明 9754408
捐赠科研通 2933862
什么是DOI,文献DOI怎么找? 1606458
邀请新用户注册赠送积分活动 758497
科研通“疑难数据库(出版商)”最低求助积分说明 734836