Multi-objective reinforcement learning-based energy management for fuel cell vehicles considering lifecycle costs

强化学习 计算机科学 适应性 耐久性 趋同(经济学) 可靠性工程 汽车工程 数学优化 模拟 人工智能 工程类 数学 数据库 生物 经济增长 经济 生态学
作者
Jing Wu,Dafeng Song,Xiaoming Zhang,Caiquan Duan,Dan Yang
出处
期刊:International Journal of Hydrogen Energy [Elsevier BV]
卷期号:48 (95): 37385-37401 被引量:10
标识
DOI:10.1016/j.ijhydene.2023.06.145
摘要

To balance the hydrogen consumption of fuel cell vehicle (FCV), the durability of the fuel cell (FC), and the life of the power battery (PB) to further reduce the whole lifecycle costs of FCV. A multi-objective reinforcement learning-based (MORL-based) energy management strategy (EMS) is proposed in this research. First, the composition mechanism of the FCV lifecycle costs is analyzed, and the equivalent hydrogen consumption model, FC durability degradation model, and PB life decay model are established; Then, a three-dimensional reward function is constructed by integrating the objectives of equivalent hydrogen consumption, FC durability degradation, and PB life decay. And the penalty terms coupled with the decay factors are introduced into the reward function to satisfy the mutual constraint characteristics between the PB and the FC system to ensure the stability of the MORL-based EMS; In addition, the prioritized experience replay technology is introduced into the MORL-based EMS to improve the learning efficiency and convergence of traditional deep Q network (DQN) algorithm; After that, the evaluation and target network of the embedded dueling network are introduced to solve the multi-objective overestimation problem encountered in the training process by generalizing the behavior learning in the presence of similar value behaviors; Finally, the performance of MORL-based EMS and DQN-based EMS is compared by numerical simulation under various driving cycles. The results show that the MORL-based EMS proposed in this paper has better convergence ability, adaptability, and lower lifecycle costs than the DQN-based EMS. In addition, the lifecycle costs of the MORL-based EMS can achieve a 99.2% control effect of the dynamic programming-based EMS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wh完成签到,获得积分10
刚刚
Billy完成签到,获得积分10
1秒前
12345678发布了新的文献求助10
1秒前
木目完成签到,获得积分10
1秒前
Ven23完成签到,获得积分10
1秒前
郭自同完成签到,获得积分10
2秒前
G蛋白偶联发布了新的文献求助10
2秒前
ranjeah完成签到 ,获得积分10
2秒前
czy完成签到,获得积分10
2秒前
2秒前
十四应助愚林2024采纳,获得10
3秒前
袁地镜完成签到,获得积分10
3秒前
怡米李完成签到,获得积分10
3秒前
十一玮完成签到,获得积分10
3秒前
hualidy完成签到,获得积分10
3秒前
Rondab应助结实的半双采纳,获得10
3秒前
4秒前
4秒前
hanyy完成签到,获得积分10
4秒前
张慧仪发布了新的文献求助10
4秒前
zs完成签到,获得积分10
5秒前
踏浪浪完成签到,获得积分10
5秒前
陶醉涵梅完成签到,获得积分10
5秒前
chuhuibaba完成签到,获得积分20
6秒前
霖槿完成签到,获得积分10
6秒前
东北饿霸完成签到,获得积分10
7秒前
chemist007完成签到,获得积分10
7秒前
7秒前
叮咚jingle完成签到,获得积分10
7秒前
顾难摧完成签到 ,获得积分10
7秒前
7秒前
朱建军应助超帅的鹏飞采纳,获得10
7秒前
大力的乐曲完成签到,获得积分10
7秒前
8秒前
含蓄戾完成签到 ,获得积分10
8秒前
洋溢完成签到,获得积分10
8秒前
wanci应助坦率的薯片采纳,获得10
9秒前
小赵同学发布了新的文献求助10
10秒前
27完成签到,获得积分10
10秒前
Xltox完成签到,获得积分10
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009093
求助须知:如何正确求助?哪些是违规求助? 3548906
关于积分的说明 11300209
捐赠科研通 3283436
什么是DOI,文献DOI怎么找? 1810365
邀请新用户注册赠送积分活动 886129
科研通“疑难数据库(出版商)”最低求助积分说明 811259