Multi-objective reinforcement learning-based energy management for fuel cell vehicles considering lifecycle costs

强化学习 计算机科学 适应性 耐久性 趋同(经济学) 可靠性工程 汽车工程 数学优化 模拟 人工智能 工程类 数学 数据库 生物 经济增长 经济 生态学
作者
Jing Wu,Dafeng Song,Xiaoming Zhang,Caiquan Duan,Dan Yang
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:48 (95): 37385-37401 被引量:10
标识
DOI:10.1016/j.ijhydene.2023.06.145
摘要

To balance the hydrogen consumption of fuel cell vehicle (FCV), the durability of the fuel cell (FC), and the life of the power battery (PB) to further reduce the whole lifecycle costs of FCV. A multi-objective reinforcement learning-based (MORL-based) energy management strategy (EMS) is proposed in this research. First, the composition mechanism of the FCV lifecycle costs is analyzed, and the equivalent hydrogen consumption model, FC durability degradation model, and PB life decay model are established; Then, a three-dimensional reward function is constructed by integrating the objectives of equivalent hydrogen consumption, FC durability degradation, and PB life decay. And the penalty terms coupled with the decay factors are introduced into the reward function to satisfy the mutual constraint characteristics between the PB and the FC system to ensure the stability of the MORL-based EMS; In addition, the prioritized experience replay technology is introduced into the MORL-based EMS to improve the learning efficiency and convergence of traditional deep Q network (DQN) algorithm; After that, the evaluation and target network of the embedded dueling network are introduced to solve the multi-objective overestimation problem encountered in the training process by generalizing the behavior learning in the presence of similar value behaviors; Finally, the performance of MORL-based EMS and DQN-based EMS is compared by numerical simulation under various driving cycles. The results show that the MORL-based EMS proposed in this paper has better convergence ability, adaptability, and lower lifecycle costs than the DQN-based EMS. In addition, the lifecycle costs of the MORL-based EMS can achieve a 99.2% control effect of the dynamic programming-based EMS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LaTeXer应助垃圾制造者采纳,获得30
刚刚
pia叽完成签到 ,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
饱满麦片完成签到,获得积分10
1秒前
张大炮发布了新的文献求助10
2秒前
艾玛应助zehua309采纳,获得50
3秒前
SciGPT应助科研通管家采纳,获得10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
5秒前
Amber发布了新的文献求助10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
5秒前
枫枫829发布了新的文献求助10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
5秒前
吕洺旭应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
6秒前
Delphinum应助科研通管家采纳,获得10
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
xinghui应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603799
求助须知:如何正确求助?哪些是违规求助? 4688754
关于积分的说明 14855835
捐赠科研通 4695101
什么是DOI,文献DOI怎么找? 2540987
邀请新用户注册赠送积分活动 1507143
关于科研通互助平台的介绍 1471814