Multi-objective reinforcement learning-based energy management for fuel cell vehicles considering lifecycle costs

强化学习 计算机科学 适应性 耐久性 趋同(经济学) 可靠性工程 汽车工程 数学优化 模拟 人工智能 工程类 数学 数据库 生物 经济增长 经济 生态学
作者
Jing Wu,Dafeng Song,Xiaoming Zhang,Caiquan Duan,Dan Yang
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:48 (95): 37385-37401 被引量:10
标识
DOI:10.1016/j.ijhydene.2023.06.145
摘要

To balance the hydrogen consumption of fuel cell vehicle (FCV), the durability of the fuel cell (FC), and the life of the power battery (PB) to further reduce the whole lifecycle costs of FCV. A multi-objective reinforcement learning-based (MORL-based) energy management strategy (EMS) is proposed in this research. First, the composition mechanism of the FCV lifecycle costs is analyzed, and the equivalent hydrogen consumption model, FC durability degradation model, and PB life decay model are established; Then, a three-dimensional reward function is constructed by integrating the objectives of equivalent hydrogen consumption, FC durability degradation, and PB life decay. And the penalty terms coupled with the decay factors are introduced into the reward function to satisfy the mutual constraint characteristics between the PB and the FC system to ensure the stability of the MORL-based EMS; In addition, the prioritized experience replay technology is introduced into the MORL-based EMS to improve the learning efficiency and convergence of traditional deep Q network (DQN) algorithm; After that, the evaluation and target network of the embedded dueling network are introduced to solve the multi-objective overestimation problem encountered in the training process by generalizing the behavior learning in the presence of similar value behaviors; Finally, the performance of MORL-based EMS and DQN-based EMS is compared by numerical simulation under various driving cycles. The results show that the MORL-based EMS proposed in this paper has better convergence ability, adaptability, and lower lifecycle costs than the DQN-based EMS. In addition, the lifecycle costs of the MORL-based EMS can achieve a 99.2% control effect of the dynamic programming-based EMS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jojo完成签到,获得积分20
刚刚
张康发布了新的文献求助10
刚刚
刚刚
michael发布了新的文献求助30
刚刚
上官若男应助苹果妙之采纳,获得10
1秒前
121发布了新的文献求助30
1秒前
2秒前
明亮孱发布了新的文献求助10
2秒前
2秒前
awxefc完成签到,获得积分10
3秒前
Maisie完成签到,获得积分10
3秒前
NexusExplorer应助LLLLLL采纳,获得10
5秒前
NICAI应助静春采纳,获得30
6秒前
6秒前
6秒前
zyf完成签到,获得积分10
6秒前
Ava应助魔幻蓉采纳,获得10
7秒前
XUNGEER11完成签到,获得积分10
7秒前
浮游应助如意的剑鬼采纳,获得10
7秒前
浅眠发布了新的文献求助10
7秒前
可靠的老鼠完成签到,获得积分10
7秒前
星辰大海应助一忽儿左采纳,获得10
8秒前
8秒前
PIERROT发布了新的文献求助80
9秒前
9秒前
逢场作戱__完成签到 ,获得积分10
9秒前
10秒前
爆米花应助XUNGEER11采纳,获得10
10秒前
yuanhao发布了新的文献求助10
10秒前
五十五发布了新的文献求助10
10秒前
10秒前
两棵树完成签到,获得积分10
11秒前
科研小白发布了新的文献求助10
11秒前
温言完成签到,获得积分10
12秒前
JamesPei应助云朵上的鱼采纳,获得10
13秒前
BowieHuang应助江遇采纳,获得10
13秒前
13秒前
电灯胆发布了新的文献求助10
13秒前
asf完成签到,获得积分10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545721
求助须知:如何正确求助?哪些是违规求助? 4631761
关于积分的说明 14622099
捐赠科研通 4573427
什么是DOI,文献DOI怎么找? 2507524
邀请新用户注册赠送积分活动 1484223
关于科研通互助平台的介绍 1455530