Multi-objective reinforcement learning-based energy management for fuel cell vehicles considering lifecycle costs

强化学习 计算机科学 适应性 耐久性 趋同(经济学) 可靠性工程 汽车工程 数学优化 模拟 人工智能 工程类 数学 生态学 数据库 经济 生物 经济增长
作者
Jing Wu,Dafeng Song,Xiaoming Zhang,Caiquan Duan,Dan Yang
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:48 (95): 37385-37401 被引量:10
标识
DOI:10.1016/j.ijhydene.2023.06.145
摘要

To balance the hydrogen consumption of fuel cell vehicle (FCV), the durability of the fuel cell (FC), and the life of the power battery (PB) to further reduce the whole lifecycle costs of FCV. A multi-objective reinforcement learning-based (MORL-based) energy management strategy (EMS) is proposed in this research. First, the composition mechanism of the FCV lifecycle costs is analyzed, and the equivalent hydrogen consumption model, FC durability degradation model, and PB life decay model are established; Then, a three-dimensional reward function is constructed by integrating the objectives of equivalent hydrogen consumption, FC durability degradation, and PB life decay. And the penalty terms coupled with the decay factors are introduced into the reward function to satisfy the mutual constraint characteristics between the PB and the FC system to ensure the stability of the MORL-based EMS; In addition, the prioritized experience replay technology is introduced into the MORL-based EMS to improve the learning efficiency and convergence of traditional deep Q network (DQN) algorithm; After that, the evaluation and target network of the embedded dueling network are introduced to solve the multi-objective overestimation problem encountered in the training process by generalizing the behavior learning in the presence of similar value behaviors; Finally, the performance of MORL-based EMS and DQN-based EMS is compared by numerical simulation under various driving cycles. The results show that the MORL-based EMS proposed in this paper has better convergence ability, adaptability, and lower lifecycle costs than the DQN-based EMS. In addition, the lifecycle costs of the MORL-based EMS can achieve a 99.2% control effect of the dynamic programming-based EMS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼鱼鱼KYSL完成签到 ,获得积分10
1秒前
QXS发布了新的文献求助10
1秒前
Ninth发布了新的文献求助10
2秒前
3秒前
阿烨发布了新的文献求助200
3秒前
HRX发布了新的文献求助10
3秒前
00000发布了新的文献求助10
3秒前
pop完成签到 ,获得积分10
3秒前
5秒前
阿包发布了新的文献求助10
6秒前
lz应助巴裘拉采纳,获得10
6秒前
6秒前
李健的小迷弟应助Maqian采纳,获得10
6秒前
6秒前
7秒前
白芷发布了新的文献求助10
7秒前
7秒前
JamesPei应助小一采纳,获得10
9秒前
Sir_M发布了新的文献求助10
10秒前
嘚嘚发布了新的文献求助10
10秒前
思源应助vvvvvvld采纳,获得10
10秒前
大兔子发布了新的文献求助10
10秒前
10秒前
席楠发布了新的文献求助10
11秒前
11秒前
今夕何夕完成签到,获得积分10
12秒前
科研通AI2S应助nuonuo采纳,获得10
13秒前
Akim应助科研小林采纳,获得10
14秒前
15秒前
白疾发布了新的文献求助10
16秒前
FashionBoy应助DrZ采纳,获得10
16秒前
个性小鸽子给个性小鸽子的求助进行了留言
16秒前
16秒前
天天快乐应助科研通管家采纳,获得30
16秒前
heolmes应助科研通管家采纳,获得10
17秒前
深情安青应助科研通管家采纳,获得10
17秒前
orixero应助科研通管家采纳,获得10
17秒前
搜集达人应助科研通管家采纳,获得10
17秒前
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170879
求助须知:如何正确求助?哪些是违规求助? 2821852
关于积分的说明 7936730
捐赠科研通 2482297
什么是DOI,文献DOI怎么找? 1322448
科研通“疑难数据库(出版商)”最低求助积分说明 633639
版权声明 602608