已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A model‐based approach to predict individual weight loss with semaglutide in people with overweight or obesity

赛马鲁肽 超重 减肥 医学 肥胖 人口统计学的 人口 加药 内科学 糖尿病 2型糖尿病 人口学 内分泌学 环境卫生 利拉鲁肽 社会学
作者
Anders Strathe,Deborah B. Horn,Malte Selch Larsen,Domenica Rubino,Rasmus Sørrig,Marie Thi Dao Tran,Sean Wharton,Rune Viig Overgaard
出处
期刊:Diabetes, Obesity and Metabolism [Wiley]
卷期号:25 (11): 3171-3180 被引量:22
标识
DOI:10.1111/dom.15211
摘要

Abstract Aims To determine the relationship between exposure and weight‐loss trajectories for the glucagon‐like peptide‐1 analogue semaglutide for weight management. Materials and Methods Data from one 52‐week, phase 2, dose‐ranging trial (once‐daily subcutaneous semaglutide 0.05–0.4 mg) and two 68‐week phase 3 trials (once‐weekly subcutaneous semaglutide 2.4 mg) for weight management in people with overweight or obesity with or without type 2 diabetes were used to develop a population pharmacokinetic (PK) model describing semaglutide exposure. An exposure‐response model describing weight change was then developed using baseline demographics, glycated haemoglobin and PK data during treatment. The ability of the exposure‐response model to predict 1‐year weight loss based on weight data collected at baseline and after up to 28 weeks of treatment, was assessed using three independent phase 3 trials. Results Based on population PK, exposure levels over time consistently explained the weight‐loss trajectories across trials and dosing regimens. The exposure‐response model had high precision and limited bias for predicting body weight loss at 1 year in independent datasets, with increased precision when data from later time points were included in the prediction. Conclusion An exposure‐response model has been established that quantitatively describes the relationship between systemic semaglutide exposure and weight loss and predicts weight‐loss trajectories for people with overweight or obesity who are receiving semaglutide doses up to 2.4 mg once weekly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Xx发布了新的文献求助30
2秒前
深情安青应助xzm采纳,获得10
2秒前
儒雅HR完成签到,获得积分10
3秒前
RuiWang发布了新的文献求助10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
3秒前
Ava应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
4秒前
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
Jeff发布了新的文献求助10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
5秒前
风趣的弘文完成签到,获得积分10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
燕燕完成签到 ,获得积分10
5秒前
5秒前
5秒前
8秒前
8秒前
juyi发布了新的文献求助10
9秒前
9秒前
10秒前
闪闪落雁发布了新的文献求助10
12秒前
Jeff完成签到,获得积分10
15秒前
15秒前
李达熙完成签到,获得积分10
16秒前
阿碧发布了新的文献求助10
17秒前
17秒前
17秒前
xzm发布了新的文献求助10
18秒前
yuebaoji发布了新的文献求助30
18秒前
共享精神应助科研狗敏敏采纳,获得30
21秒前
qzp完成签到 ,获得积分10
22秒前
晓奕发布了新的文献求助10
22秒前
阿碧完成签到,获得积分10
25秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5705304
求助须知:如何正确求助?哪些是违规求助? 5162660
关于积分的说明 15244765
捐赠科研通 4859189
什么是DOI,文献DOI怎么找? 2607598
邀请新用户注册赠送积分活动 1558753
关于科研通互助平台的介绍 1516319