Giant panda face recognition based on PandaFaceNet

大熊猫 人工智能 计算机科学 面部识别系统 模式识别(心理学) 样品(材料) 野生动物 狐猴 计算机视觉 生态学 生物 化学 色谱法 灵长类动物
作者
Wen Chen,Bochuan Zheng,Jindong Zhang,Liming Xu,Jin Hou,Vanessa Hull
出处
期刊:Ecological Informatics [Elsevier]
卷期号:77: 102225-102225 被引量:1
标识
DOI:10.1016/j.ecoinf.2023.102225
摘要

Individual recognition of animals via infrared camera trapping surveys is an important method for protecting and monitoring animals in the wild. However, several factors limit current survey methods used for individual animal recognition, such as the lack of accuracy and extensive time required to process data. Recently, new technologies and methods for individual recognition of animal images have been developed for rare wildlife species (e.g., giant pandas and lemurs). These new technologies require adequate and high-quality sampled images; however, it can be challenging for researchers to obtain an adequate sample size of wildlife images from the field. To overcome this problem, we proposed and tested a new small-sample individual recognition method adapted from FaceNet called PandaFaceNet, using data from a self-built giant panda (Ailuropoda melanoleuca) facial image database. We tested the proposed giant panda individual recognition method on unknown captive and wild giant panda datasets. The results showed that this method has 95.3% recognition accuracy for distinguishing among two captive giant panda facial images and 91% recognition accuracy for distinguishing among two wild giant pandas. Notably, PandaFaceNet achieves individual recognition through comparing two images and is an open-set identification method. Therefore, PandaFaceNet provides a novel method for giant panda research by opening up opportunities for analysis of small sample sizes of panda imagery data, while also providing new directions for research on rare wildlife more broadly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助墨墨采纳,获得10
刚刚
zhangyafei发布了新的文献求助10
1秒前
2506601498完成签到,获得积分10
1秒前
3秒前
3秒前
3秒前
NexusExplorer应助忧伤的觅珍采纳,获得10
3秒前
藤椒辣鱼应助Lenora采纳,获得10
3秒前
Cheyao发布了新的文献求助10
3秒前
科研猫猫完成签到,获得积分10
3秒前
zhang08完成签到,获得积分10
3秒前
共享精神应助哈哈哈采纳,获得10
3秒前
丰知然应助粒粒采纳,获得10
3秒前
4秒前
4秒前
npknpk发布了新的文献求助10
4秒前
小二郎应助dgygy采纳,获得10
4秒前
一二三发布了新的文献求助10
5秒前
QR发布了新的文献求助10
5秒前
受伤哈密瓜完成签到 ,获得积分10
6秒前
我是老大应助2506601498采纳,获得10
6秒前
lila完成签到,获得积分10
6秒前
烟花应助花花123采纳,获得10
7秒前
天天快乐应助葡萄成熟采纳,获得10
8秒前
8秒前
chen完成签到 ,获得积分10
8秒前
8秒前
lzy完成签到 ,获得积分10
10秒前
10秒前
Henry完成签到,获得积分0
10秒前
邢慧兰完成签到,获得积分10
11秒前
11秒前
zs完成签到,获得积分10
11秒前
石会发发布了新的文献求助10
12秒前
12秒前
12秒前
LF完成签到,获得积分10
13秒前
饱满含玉发布了新的文献求助10
13秒前
13秒前
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
中成药治疗优势病种临床应用指南 2000
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3447793
求助须知:如何正确求助?哪些是违规求助? 3043512
关于积分的说明 8994765
捐赠科研通 2731965
什么是DOI,文献DOI怎么找? 1498556
科研通“疑难数据库(出版商)”最低求助积分说明 692788
邀请新用户注册赠送积分活动 690641