Construction of lung cancer serum markers based on ReliefF feature selection

特征选择 肺癌 选择(遗传算法) 特征(语言学) 计算机科学 癌症 人工智能 模式识别(心理学) 计算生物学 医学 肿瘤科 内科学 生物 语言学 哲学
作者
Yong Li,Nanding Yu,Xiang-Li Ye,Meichen Jiang,Xiangqi Chen
出处
期刊:Computer Methods in Biomechanics and Biomedical Engineering [Taylor & Francis]
卷期号:27 (10): 1215-1223
标识
DOI:10.1080/10255842.2023.2235045
摘要

AbstractSerum miRNAs are available clinical samples for cancer screening. Identifying early serum markers in lung cancer (LC) is essential for patients' early diagnosis and clinical treatment. Expression data of serum miRNAs of lung adenocarcinoma (LUAD) patients and healthy individuals were downloaded from the Gene Expression Omnibus (GEO). These data were normalized and subjected to differential expression analysis to obtain differentially expressed miRNAs (DEmiRNAs). The DEmiRNAs were subsequently subjected to ReliefF feature selection, and subsets closely related to cancer were screened as candidate feature miRNAs. Thereafter, a Gaussian Naive Bayes (NB), Support Vector Machine (SVM), and Random Forest (RF) classifier were constructed based on these candidate feature miRNAs. Then the best diagnostic signature was constructed through NB combined with incremental feature selection (IFS). Thereafter, these samples were subjected to principal component analysis (PCA) based on miRNAs with optimal predictive performance. Finally, the peripheral serum miRNAs of 64 LUAD patients and 59 normal individuals were extracted for qRT-PCR analysis to validate the performance of the diagnostic model in respect of clinical detection. Finally, according to area under the curve (AUC) and accuracy values, the NB classifier composed of miR-5100 and miR-663a manifested the most outstanding diagnostic performance. The PCA results also revealed that the 2-miRNA diagnostic signature could effectively distinguish cancer patients from healthy individuals. Finally, qRT-PCR results of clinical serum samples revealed that miR-5100 and miR-663a expression in tumor samples was remarkably higher than that in normal samples. The AUC of the 2-miRNA diagnostic signature was 0.968. In summary, we identified markers (miR-5100 and miR-663a) in serum for early LUAD screening, providing ideas for developing early LUAD diagnostic models.Keywords: LUADReliefFmachine learningserum marker Ethical approvalThis study was conducted in accordance with the Helsinki Declaration II (2022KY022) and was approved by the Institutional Review Boards of Fujian Medical University Union Hospital. Participants filled out the written informed consent form.Availability of data and materialsThe data used to support the findings of this study are included within the article.Disclosure statementThe authors declare no conflicts of interest.Authors' contributionsConceptualization: Dr. YL,Formal analysis and investigation: Dr. NDY and Dr. XLY,Writing - original draft preparation: Dr. XQC and Dr. MCJ,Writing - review and editing: Dr. YL, Dr. NDY and Dr. XLY,All authors read and approved the final manuscript.Additional informationFundingThis study was Sponsored by Fujian provincial health technology project (2020GGB027) and Natural Science Foundation of Fujian Province (2021J01747).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
善良晓博发布了新的文献求助10
刚刚
LTT完成签到,获得积分10
刚刚
小小冰发布了新的文献求助10
刚刚
园艺小学生完成签到,获得积分10
1秒前
十里长亭发布了新的文献求助10
1秒前
2021完成签到 ,获得积分10
2秒前
yolo发布了新的文献求助10
2秒前
freedom313514发布了新的文献求助10
3秒前
李健的小迷弟应助李文龙采纳,获得10
3秒前
4秒前
Joy完成签到,获得积分10
4秒前
无为完成签到,获得积分10
5秒前
马騳骉完成签到,获得积分10
6秒前
sure完成签到 ,获得积分10
6秒前
无语啦完成签到,获得积分20
6秒前
clock完成签到 ,获得积分10
7秒前
cccttt完成签到,获得积分10
7秒前
7秒前
222发布了新的文献求助10
8秒前
读不完的文献啊完成签到,获得积分10
10秒前
lll完成签到,获得积分10
11秒前
wanci应助Wangyr采纳,获得10
12秒前
shuogesama完成签到,获得积分10
13秒前
烟雨完成签到,获得积分10
15秒前
freedom313514完成签到,获得积分10
16秒前
16秒前
xiaoliuyaonuli完成签到,获得积分10
16秒前
123456完成签到 ,获得积分10
16秒前
1609855535完成签到,获得积分10
16秒前
精明易真完成签到 ,获得积分10
16秒前
711完成签到,获得积分10
18秒前
李文龙发布了新的文献求助10
20秒前
20秒前
22秒前
坚定的小蘑菇完成签到 ,获得积分10
22秒前
23秒前
23秒前
李文龙完成签到,获得积分10
25秒前
云宝完成签到 ,获得积分10
25秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736892
求助须知:如何正确求助?哪些是违规求助? 3280817
关于积分的说明 10021089
捐赠科研通 2997457
什么是DOI,文献DOI怎么找? 1644633
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749703