Machine learning versus crop growth models: an ally, not a rival

可解释性 计算机科学 农业 互补性(分子生物学) 生产(经济) 农业生产力 精准农业 人口 机器学习 生物 生态学 遗传学 宏观经济学 社会学 人口学 经济
作者
Ningyi Zhang,Xiaohan Zhou,Mengzhen Kang,Bao-Gang Hu,E. Heuvelink,L.F.M. Marcelis
出处
期刊:Aob Plants [Oxford University Press]
卷期号:15 (2) 被引量:6
标识
DOI:10.1093/aobpla/plac061
摘要

Abstract The rapid increases of the global population and climate change pose major challenges to a sustainable production of food to meet consumer demands. Process-based models (PBMs) have long been used in agricultural crop production for predicting yield and understanding the environmental regulation of plant physiological processes and its consequences for crop growth and development. In recent years, with the increasing use of sensor and communication technologies for data acquisition in agriculture, machine learning (ML) has become a popular tool in yield prediction (especially on a large scale) and phenotyping. Both PBMs and ML are frequently used in studies on major challenges in crop production and each has its own advantages and drawbacks. We propose to combine PBMs and ML given their intrinsic complementarity, to develop knowledge- and data-driven modelling (KDDM) with high prediction accuracy as well as good interpretability. Parallel, serial and modular structures are three main modes can be adopted to develop KDDM for agricultural applications. The KDDM approach helps to simplify model parameterization by making use of sensor data and improves the accuracy of yield prediction. Furthermore, the KDDM approach has great potential to expand the boundary of current crop models to allow upscaling towards a farm, regional or global level and downscaling to the gene-to-cell level. The KDDM approach is a promising way of combining simulation models in agriculture with the fast developments in data science while mechanisms of many genetic and physiological processes are still under investigation, especially at the nexus of increasing food production, mitigating climate change and achieving sustainability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
COCO完成签到,获得积分10
1秒前
王茹梦发布了新的文献求助10
2秒前
SciGPT应助猫小曼采纳,获得30
2秒前
复杂的洋葱完成签到 ,获得积分10
2秒前
2秒前
Princess发布了新的文献求助10
3秒前
flyxga870825完成签到,获得积分10
4秒前
初光完成签到 ,获得积分10
4秒前
桃子发布了新的文献求助10
4秒前
7秒前
葫芦首长发布了新的文献求助10
8秒前
fawr完成签到 ,获得积分10
8秒前
flyxga870825发布了新的文献求助10
8秒前
科研通AI2S应助Steven采纳,获得10
9秒前
月上云飞完成签到,获得积分10
9秒前
老朱完成签到,获得积分10
10秒前
老迟到的小蘑菇完成签到,获得积分10
10秒前
顾矜应助emotional采纳,获得10
11秒前
无味完成签到 ,获得积分10
12秒前
13秒前
魁梧的鸿煊完成签到 ,获得积分10
13秒前
袁小豪发布了新的文献求助20
13秒前
May驳回了Jasper应助
13秒前
14秒前
15秒前
Princess完成签到,获得积分10
16秒前
俊逸的从云完成签到 ,获得积分10
16秒前
葫芦首长完成签到,获得积分10
18秒前
Jasmineyfz完成签到 ,获得积分10
18秒前
爱静静应助Ren采纳,获得30
18秒前
shashali发布了新的文献求助10
18秒前
19秒前
ccc完成签到,获得积分10
23秒前
Liam发布了新的文献求助10
24秒前
gy完成签到 ,获得积分10
24秒前
人间枝头完成签到,获得积分10
24秒前
yulong完成签到,获得积分10
27秒前
闪闪的从彤完成签到 ,获得积分0
27秒前
传奇3应助邓布利多采纳,获得10
28秒前
NexusExplorer应助shashali采纳,获得20
28秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242214
求助须知:如何正确求助?哪些是违规求助? 2886591
关于积分的说明 8244076
捐赠科研通 2555160
什么是DOI,文献DOI怎么找? 1383272
科研通“疑难数据库(出版商)”最低求助积分说明 649672
邀请新用户注册赠送积分活动 625480