Physics-informed hidden markov model for tool wear monitoring

可解释性 刀具磨损 隐马尔可夫模型 一致性(知识库) 机械加工 人工神经网络 机器学习 工程类 集合(抽象数据类型) 数据挖掘 人工智能 计算机科学 机械工程 程序设计语言
作者
Kunpeng Zhu,Xin Li,Shenshen Li,Xin Lin
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:72: 308-322 被引量:20
标识
DOI:10.1016/j.jmsy.2023.11.003
摘要

Tool wear monitoring (TWM) is an important part of modern intelligent machining. An efficient and accurate monitoring system will effectively improve machining accuracy and reduce processing costs. At present, the methods for TWM can generally be divided into three categories: physics-based models, data-driven models, and hybrid models. These current approaches are suffered from either low prediction accuracy, insufficient model training, or poor result interpretability due to the nature of the model construction approaches. To overcome the shortcomings of these methods, a physics-informed hidden Markov model (PI-HMM) proposed in this study fully integrates the advantages of the above two methods. Firstly, the model constrains the division of hidden states through the tool wear physical model to improve the physical consistency of the model. Secondly, according to the process parameters and the labels generated by the tool wear physical model, the training set is expanded to solve the problem of insufficient training data of the data model. Finally, the influence of real-time features is added to the established wear state output model and the physical data fusion training strategy is used to train the model to realize the classification of tool wear state and the regression of wear value. The experimental results show that the proposed model in this study achieves an average recognition rate of 0.995 for wear classification and an average coefficient of determination (R2) of 0.968 for wear regression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
破碎时间完成签到 ,获得积分10
1秒前
阔达如松发布了新的文献求助10
1秒前
Orange应助默默采纳,获得10
1秒前
1秒前
1秒前
GDN完成签到 ,获得积分10
1秒前
哥哥完成签到,获得积分10
2秒前
hwyk发布了新的文献求助10
3秒前
3秒前
蒋若风发布了新的文献求助10
3秒前
amanda应助张益发采纳,获得20
3秒前
cx_008完成签到,获得积分10
3秒前
4秒前
4秒前
FashionBoy应助卫三采纳,获得10
4秒前
4秒前
Orange应助傻傻的仙人掌采纳,获得10
5秒前
荒林完成签到,获得积分20
5秒前
5秒前
万能图书馆应助jh采纳,获得10
6秒前
小北发布了新的文献求助10
6秒前
CodeCraft应助Usin采纳,获得10
6秒前
丘比特应助小贝采纳,获得10
6秒前
tomorrow发布了新的文献求助10
6秒前
zkygmu完成签到,获得积分20
6秒前
HuiYmao发布了新的文献求助10
7秒前
7秒前
鲜艳的芹发布了新的文献求助10
8秒前
8秒前
哟哟小姚妹妹完成签到,获得积分10
8秒前
doc.level完成签到,获得积分10
9秒前
丘比特应助沉静白翠采纳,获得10
10秒前
科目三应助阔达如松采纳,获得10
10秒前
烟花应助王枫采纳,获得10
11秒前
lio完成签到,获得积分10
11秒前
等风来、云飞扬完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
舒适静丹完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836