Microplastics (MPs) could provide vector for microorganisms to form biofilm (plastisphere), but the shaping process of MPs biofilm and its effects on the structure and function of sedimentary microbial communities especially in aquaculture environments are not reported. For this, we incubated MPs biofilm in situ in an aquaculture pond and established a sediment microcosm with plastisphere. We found that the formation of MPs biofilm in surface water was basically stable after 30 d incubation, but the biofilm communities were reshaped after deposition for another 30 d, because they were more similar to plastisphere communities incubated directly within sediment but not surface water. Moreover, microbial communities of MPs-contaminated sediment were altered, which was mainly driven by the biofilm communities present on MPs, because they but not sediment communities in proximity to MPs had a more pronounced separation from the control sediment communities. In the presence of MPs, increased sediment nitrification, denitrification and N2O production rates were observed. The K00371 (NO2-⇋NO3-) pathway and elevated abundance of nxrB and narH genes were screened by metagenomic analysis. Based on structural equation model, two key bacteria (Alphaproteobacteria bacterium and Rhodobacteraceae bacterium) associated with N2O production were further identified. Overall, the settling of MPs could reshape the original biofilm and promote N2O production by selectively elevating sedimental microorganisms and functional genes in aquaculture pond.