FD-Net: Feature Distillation Network for Oral Squamous Cell Carcinoma Lymph Node Segmentation in Hyperspectral Imagery

高光谱成像 分割 阶段(地层学) 计算机科学 人工智能 特征(语言学) H&E染色 淋巴结 癌症 模式识别(心理学) 图像分割 医学 病理 内科学 染色 生物 古生物学 语言学 哲学
作者
Xueyu Zhang,Qingxiang Li,Wei Li,Wei Li,Jianyun Zhang,Chuanbin Guo,Kan Chang,Nigel H. Lovell
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (3): 1552-1563 被引量:8
标识
DOI:10.1109/jbhi.2024.3350245
摘要

Oral squamous cell carcinoma (OSCC) has the characteristics of early regional lymph node metastasis. OSCC patients often have poor prognoses and low survival rates due to cervical lymph metastases. Therefore, it is necessary to rely on a reasonable screening method to quickly judge the cervical lymph metastastic condition of OSCC patients and develop appropriate treatment plans. In this study, the widely used pathological sections with hematoxylin-eosin (H&E) staining are taken as the target, and combined with the advantages of hyperspectral imaging technology, a novel diagnostic method for identifying OSCC lymph node metastases is proposed. The method consists of a learning stage and a decision-making stage, focusing on cancer and non-cancer nuclei, gradually completing the lesions' segmentation from coarse to fine, and achieving high accuracy. In the learning stage, the proposed feature distillation-Net (FD-Net) network is developed to segment the cancerous and non-cancerous nuclei. In the decision-making stage, the segmentation results are post-processed, and the lesions are effectively distinguished based on the prior. Experimental results demonstrate that the proposed FD-Net is very competitive in the OSCC hyperspectral medical image segmentation task. The proposed FD-Net method performs best on the seven segmentation evaluation indicators: MIoU, OA, AA, SE, CSI, GDR, and DICE. Among these seven evaluation indicators, the proposed FD-Net method is 1.75%, 1.27%, 0.35%, 1.9%, 0.88%, 4.45%, and 1.98% higher than the DeepLab V3 method, which ranks second in performance, respectively. In addition, the proposed diagnosis method of OSCC lymph node metastasis can effectively assist pathologists in disease screening and reduce the workload of pathologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dangziutiu完成签到 ,获得积分10
刚刚
李健应助零零采纳,获得10
1秒前
2秒前
千纸鹤发布了新的文献求助10
2秒前
深情安青应助wll采纳,获得10
2秒前
treasure完成签到,获得积分10
2秒前
skynnnim完成签到,获得积分20
3秒前
4秒前
小景诺完成签到,获得积分10
6秒前
寒冷的老太完成签到,获得积分20
6秒前
Lucas应助宝儿姐采纳,获得10
7秒前
7秒前
8秒前
知无涯者完成签到,获得积分10
9秒前
田様应助hcmsaobang2001采纳,获得10
9秒前
伍小颖酱发布了新的文献求助10
10秒前
xpd发布了新的文献求助30
12秒前
xiaohang发布了新的文献求助10
12秒前
13秒前
思源应助孤独的匕采纳,获得10
13秒前
13秒前
李爱国应助小景诺采纳,获得10
14秒前
灿烂sunfly完成签到,获得积分10
14秒前
上进完成签到 ,获得积分10
15秒前
李健的小迷弟应助寒子川采纳,获得10
15秒前
楼北完成签到,获得积分10
15秒前
zz发布了新的文献求助10
18秒前
corazon发布了新的文献求助10
18秒前
伍小颖酱完成签到,获得积分10
19秒前
19秒前
20秒前
21秒前
活泼的聋五完成签到,获得积分10
21秒前
22秒前
合适的芸遥完成签到,获得积分10
23秒前
小马甲应助俏皮的飞荷采纳,获得10
23秒前
古月方源完成签到,获得积分10
23秒前
明芬发布了新的文献求助10
24秒前
26秒前
赵怡梦发布了新的文献求助20
26秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157989
求助须知:如何正确求助?哪些是违规求助? 2809366
关于积分的说明 7881582
捐赠科研通 2467822
什么是DOI,文献DOI怎么找? 1313728
科研通“疑难数据库(出版商)”最低求助积分说明 630522
版权声明 601943