电催化剂
催化作用
电解质
法拉第效率
可逆氢电极
化学
分子
氢
无机化学
电化学
电极
物理化学
工作电极
有机化学
作者
Shaozhen Liang,Teng Xue,Heng Xu,Lisong Chen,Jianlin Shi
标识
DOI:10.1002/anie.202400206
摘要
Abstract During the electrocatalytic NO 3 − reduction reaction (NO 3 − RR) under neutral condition, the activation of H 2 O to generate H* and the inhibition of inter‐H* species binding, are critically important but remain challenging for suppressing the non‐desirable hydrogen evolution reaction (HER). Here, a Mn‐doped Co(OH) 2 (named as Mn‐Co(OH) 2 ) has been synthesized by in situ reconstruction in the electrolyte, which is able to dissociate H 2 O molecules but inhibits the binding of H* species between each other owing to the increased interatomic spacing by the Mn‐doping. The Mn‐Co(OH) 2 electrocatalyst offers a faradaic efficiency (FE) of as high as 98.9±1.7% at −0.6 V vs. the reversible hydrogen electrode (RHE) and an energy efficiency (EE) of 49.90±1.03% for NH 3 production by NO 3 − RR, which are among the highest of the recently reported state‐of‐the‐art catalysts in neutral electrolyte. Moreover, negligible degradation at −200 mA cm −2 has been found for at least 500 h, which is the longest catalytic durations ever reported. This work paves a novel approach for the design and synthesis of efficient NO 3 − RR electrocatalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI