已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Identifying potential ligand–receptor interactions based on gradient boosted neural network and interpretable boosting machine for intercellular communication analysis

计算机科学 人工智能 机器学习 推论 雅卡索引 Boosting(机器学习) 模式识别(心理学)
作者
Lihong Peng,Pengfei Gao,Wei Xiong,Zejun Li,Xing Chen
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:171: 108110-108110 被引量:8
标识
DOI:10.1016/j.compbiomed.2024.108110
摘要

Cell–cell communication is essential to many key biological processes. Intercellular communication is generally mediated by ligand–receptor interactions (LRIs). Thus, building a comprehensive and high-quality LRI resource can significantly improve intercellular communication analysis. Meantime, due to lack of a "gold standard" dataset, it remains a challenge to evaluate LRI-mediated intercellular communication results. Here, we introduce CellGiQ, a high-confident LRI prediction framework for intercellular communication analysis. Highly confident LRIs are first inferred by LRI feature extraction with BioTriangle, LRI selection using LightGBM, and LRI classification based on ensemble of gradient boosted neural network and interpretable boosting machine. Subsequently, known and identified high-confident LRIs are filtered by combining single-cell RNA sequencing (scRNA-seq) data and further applied to intercellular communication inference through a quartile scoring strategy. To validation the predictions, CellGiQ exploited several evaluation strategies: using AUC and AUPR, it surpassed six competing LRI prediction models on four LRI datasets; through Venn diagrams and molecular docking, its predicted LRIs were validated by five other popular intercellular communication inference methods; based on the overlapping LRIs, it computed high Jaccard index with six other state-of-the-art intercellular communication prediction tools within human HNSCC tissues; by comparing with classical models and literature retrieve, its inferred HNSCC-related intercellular communication results was further validated. The novelty of this study is to identify high-confident LRIs based on machine learning as well as design several LRI validation ways, providing reference for computational LRI prediction. CellGiQ provides an open-source and useful tool to decompose LRI-mediated intercellular communication at single cell resolution. CellGiQ is freely available at https://github.com/plhhnu/CellGiQ.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
deeferf完成签到 ,获得积分10
1秒前
欢欢完成签到,获得积分10
4秒前
Stanfuny完成签到,获得积分10
6秒前
Lih完成签到 ,获得积分10
6秒前
breeze完成签到,获得积分10
7秒前
河滨神关注了科研通微信公众号
7秒前
11秒前
zho关闭了zho文献求助
11秒前
muyi完成签到 ,获得积分10
13秒前
16秒前
WWXWWX应助伟航采纳,获得10
16秒前
领导范儿应助summer夏采纳,获得10
17秒前
河滨神发布了新的文献求助10
22秒前
刘欣怡发布了新的文献求助10
22秒前
时尚问安完成签到 ,获得积分10
27秒前
29秒前
务实的焦完成签到 ,获得积分10
29秒前
kevin1018完成签到,获得积分0
33秒前
领导范儿应助科研通管家采纳,获得10
33秒前
33秒前
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
33秒前
田様应助科研通管家采纳,获得10
33秒前
121完成签到,获得积分10
34秒前
wang完成签到 ,获得积分10
35秒前
38秒前
LYL完成签到,获得积分10
39秒前
情怀应助激昂的紫烟采纳,获得10
42秒前
43秒前
吴未发布了新的文献求助10
43秒前
summer夏发布了新的文献求助10
43秒前
肖肖肖完成签到 ,获得积分10
43秒前
北斗HH完成签到,获得积分10
44秒前
CHENHL完成签到,获得积分10
45秒前
45秒前
Orange应助Lnn采纳,获得10
50秒前
CHSLN完成签到 ,获得积分10
50秒前
翻译度完成签到,获得积分10
53秒前
fwda1000完成签到 ,获得积分10
54秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3238656
求助须知:如何正确求助?哪些是违规求助? 2884064
关于积分的说明 8232343
捐赠科研通 2552071
什么是DOI,文献DOI怎么找? 1380475
科研通“疑难数据库(出版商)”最低求助积分说明 649011
邀请新用户注册赠送积分活动 624725