亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identifying potential ligand–receptor interactions based on gradient boosted neural network and interpretable boosting machine for intercellular communication analysis

计算机科学 人工智能 机器学习 推论 雅卡索引 Boosting(机器学习) 模式识别(心理学)
作者
Lihong Peng,Pengfei Gao,Wei Xiong,Zejun Li,Xing Chen
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:171: 108110-108110 被引量:8
标识
DOI:10.1016/j.compbiomed.2024.108110
摘要

Cell–cell communication is essential to many key biological processes. Intercellular communication is generally mediated by ligand–receptor interactions (LRIs). Thus, building a comprehensive and high-quality LRI resource can significantly improve intercellular communication analysis. Meantime, due to lack of a "gold standard" dataset, it remains a challenge to evaluate LRI-mediated intercellular communication results. Here, we introduce CellGiQ, a high-confident LRI prediction framework for intercellular communication analysis. Highly confident LRIs are first inferred by LRI feature extraction with BioTriangle, LRI selection using LightGBM, and LRI classification based on ensemble of gradient boosted neural network and interpretable boosting machine. Subsequently, known and identified high-confident LRIs are filtered by combining single-cell RNA sequencing (scRNA-seq) data and further applied to intercellular communication inference through a quartile scoring strategy. To validation the predictions, CellGiQ exploited several evaluation strategies: using AUC and AUPR, it surpassed six competing LRI prediction models on four LRI datasets; through Venn diagrams and molecular docking, its predicted LRIs were validated by five other popular intercellular communication inference methods; based on the overlapping LRIs, it computed high Jaccard index with six other state-of-the-art intercellular communication prediction tools within human HNSCC tissues; by comparing with classical models and literature retrieve, its inferred HNSCC-related intercellular communication results was further validated. The novelty of this study is to identify high-confident LRIs based on machine learning as well as design several LRI validation ways, providing reference for computational LRI prediction. CellGiQ provides an open-source and useful tool to decompose LRI-mediated intercellular communication at single cell resolution. CellGiQ is freely available at https://github.com/plhhnu/CellGiQ.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qq完成签到 ,获得积分10
6秒前
7秒前
傲娇的曼香完成签到,获得积分10
14秒前
直率手机完成签到,获得积分10
15秒前
小肖完成签到 ,获得积分10
17秒前
18秒前
20秒前
25秒前
研友_VZG7GZ应助二丙采纳,获得10
26秒前
Lorain完成签到,获得积分10
26秒前
andong应助Karol采纳,获得10
28秒前
34秒前
二丙发布了新的文献求助10
39秒前
40秒前
orixero应助科研通管家采纳,获得10
42秒前
深情安青应助科研通管家采纳,获得10
42秒前
50秒前
舒萼完成签到,获得积分10
53秒前
含蓄夏瑶发布了新的文献求助10
56秒前
1分钟前
巴巴bow完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
葡紫明完成签到 ,获得积分10
1分钟前
锂氧完成签到 ,获得积分10
1分钟前
qian发布了新的文献求助10
1分钟前
烟花应助研友_V8Qmr8采纳,获得10
1分钟前
qian完成签到,获得积分10
1分钟前
汉堡包应助猪哥采纳,获得10
1分钟前
爆米花应助毛毛毛采纳,获得10
1分钟前
andong应助DeepLearning采纳,获得10
1分钟前
Leofar完成签到 ,获得积分10
1分钟前
李健应助毛毛毛采纳,获得10
1分钟前
anne完成签到 ,获得积分10
1分钟前
1分钟前
StayGolDay完成签到,获得积分10
1分钟前
漫漫楚威风完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733350
求助须知:如何正确求助?哪些是违规求助? 3277588
关于积分的说明 10003346
捐赠科研通 2993529
什么是DOI,文献DOI怎么找? 1642743
邀请新用户注册赠送积分活动 780596
科研通“疑难数据库(出版商)”最低求助积分说明 748912