亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identifying potential ligand–receptor interactions based on gradient boosted neural network and interpretable boosting machine for intercellular communication analysis

计算机科学 人工智能 机器学习 推论 雅卡索引 Boosting(机器学习) 模式识别(心理学)
作者
Lihong Peng,Pengfei Gao,Wei Xiong,Zejun Li,Xing Chen
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:171: 108110-108110 被引量:8
标识
DOI:10.1016/j.compbiomed.2024.108110
摘要

Cell–cell communication is essential to many key biological processes. Intercellular communication is generally mediated by ligand–receptor interactions (LRIs). Thus, building a comprehensive and high-quality LRI resource can significantly improve intercellular communication analysis. Meantime, due to lack of a "gold standard" dataset, it remains a challenge to evaluate LRI-mediated intercellular communication results. Here, we introduce CellGiQ, a high-confident LRI prediction framework for intercellular communication analysis. Highly confident LRIs are first inferred by LRI feature extraction with BioTriangle, LRI selection using LightGBM, and LRI classification based on ensemble of gradient boosted neural network and interpretable boosting machine. Subsequently, known and identified high-confident LRIs are filtered by combining single-cell RNA sequencing (scRNA-seq) data and further applied to intercellular communication inference through a quartile scoring strategy. To validation the predictions, CellGiQ exploited several evaluation strategies: using AUC and AUPR, it surpassed six competing LRI prediction models on four LRI datasets; through Venn diagrams and molecular docking, its predicted LRIs were validated by five other popular intercellular communication inference methods; based on the overlapping LRIs, it computed high Jaccard index with six other state-of-the-art intercellular communication prediction tools within human HNSCC tissues; by comparing with classical models and literature retrieve, its inferred HNSCC-related intercellular communication results was further validated. The novelty of this study is to identify high-confident LRIs based on machine learning as well as design several LRI validation ways, providing reference for computational LRI prediction. CellGiQ provides an open-source and useful tool to decompose LRI-mediated intercellular communication at single cell resolution. CellGiQ is freely available at https://github.com/plhhnu/CellGiQ.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虞美人发布了新的文献求助30
3秒前
科研通AI5应助雪梨101采纳,获得10
6秒前
深情安青应助爹爹采纳,获得10
9秒前
科研通AI5应助追寻的访文采纳,获得10
11秒前
15秒前
爹爹完成签到,获得积分10
17秒前
爹爹发布了新的文献求助10
19秒前
小王爱看文献完成签到 ,获得积分10
25秒前
隐形的雁完成签到,获得积分10
32秒前
yyyyyy完成签到 ,获得积分10
40秒前
蕊蕊蕊完成签到 ,获得积分10
42秒前
48秒前
49秒前
赫十三发布了新的文献求助10
54秒前
yuwen发布了新的文献求助10
55秒前
1分钟前
GDD发布了新的文献求助10
1分钟前
Rondab应助哎呦呦呦采纳,获得10
1分钟前
jyy完成签到,获得积分10
1分钟前
小二郎应助xuexi采纳,获得10
1分钟前
twrw发布了新的文献求助10
1分钟前
souther完成签到,获得积分0
1分钟前
身法马可波罗完成签到 ,获得积分10
1分钟前
1分钟前
子凡完成签到 ,获得积分10
1分钟前
twrw完成签到,获得积分20
1分钟前
虞美人发布了新的文献求助10
1分钟前
科研通AI5应助XWY采纳,获得10
1分钟前
顾矜应助罗皮特采纳,获得10
1分钟前
猫猫逃离二次元完成签到,获得积分10
1分钟前
2分钟前
2分钟前
大意的绿蓉完成签到,获得积分10
2分钟前
2分钟前
2分钟前
尊敬雪萍发布了新的文献求助10
2分钟前
英姑应助重要的夏烟采纳,获得10
2分钟前
李健应助ssynkl采纳,获得10
2分钟前
Leffzeng完成签到,获得积分10
2分钟前
demonox发布了新的文献求助10
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968293
求助须知:如何正确求助?哪些是违规求助? 3513229
关于积分的说明 11166833
捐赠科研通 3248478
什么是DOI,文献DOI怎么找? 1794268
邀请新用户注册赠送积分活动 874956
科研通“疑难数据库(出版商)”最低求助积分说明 804629