Joint Self-Organizing Maps and Knowledge-Distillation-Based Communication-Efficient Federated Learning for Resource-Constrained UAV-IoT Systems

计算机科学 无人机 架空(工程) 分布式计算 资源配置 基站 无线 计算机网络 高效能源利用 旅行商问题 实时计算 电信 算法 工程类 遗传学 电气工程 生物 操作系统
作者
Gad Gad,Aya Farrag,Ahmed Aboulfotouh,Khaled Bedda,Zubair Md. Fadlullah,Mostafa M. Fouda
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (9): 15504-15522 被引量:10
标识
DOI:10.1109/jiot.2023.3349295
摘要

The adoption of Internet of Things (IoT) and monitoring devices in 5G and beyond networks has been widespread. Unmanned aerial vehicles (UAVs) have shown success in connecting rural and remote areas due to the high cost of deploying infrastructures like cellular network base stations and optical fiber connections in vast landscapes with sparse populations. The constrained energy of UAVs results in limited coverage area and flight time, which in turn reduces the potential of UAVs to provide task-oriented wireless communication links. In this article, we explore path optimization and transmission organization algorithms to minimize flight time and extend the range of UAVs performing collaborative federated learning (FL) among geographically dispersed nodes communicating through wireless connections offered by UAVs coupled with device-to-device (D2D) networks. The UAV orchestrates FL between spatially scattered homes via long-range radio wireless communication. We formulate the drone path optimization as a traveling salesman problem (TSP) and employ self-organizing maps (SOM) for path planning. Additionally, knowledge distillation (KD)-based FL is used to reduce communication overhead for the resource-constrained UAV-IoT system. Experimental results demonstrate SOM's ability to represent the topological structure of nodes and produce a cost-efficient Hamiltonian cycle, from which the drone path is derived. Our results demonstrate the communication efficiency and utility of KD-based FL compared to model-based FL methods. The proposed hybrid solution enables energy-constrained UAVs to perform FL over large areas leveraging a shared data set for KD and a SOM-based path optimization algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助11采纳,获得10
刚刚
RC_Wang应助Theone采纳,获得10
1秒前
dyh0521发布了新的文献求助10
1秒前
1秒前
alai发布了新的文献求助30
1秒前
科研通AI5应助晨烟暮霭采纳,获得10
2秒前
纯纯小白发布了新的文献求助30
2秒前
科目三应助徐徐采纳,获得10
3秒前
屋巫奈奈完成签到,获得积分10
3秒前
4秒前
科研小白发布了新的文献求助10
4秒前
思源应助VPN不好用采纳,获得10
4秒前
4秒前
十一完成签到,获得积分10
6秒前
ZYC007完成签到,获得积分10
6秒前
研友_VZG7GZ应助好嘞行采纳,获得10
7秒前
情怀应助大帅哥采纳,获得10
7秒前
moonlimb完成签到 ,获得积分10
8秒前
rjtmu完成签到,获得积分20
8秒前
8秒前
ZZXX发布了新的文献求助10
9秒前
10秒前
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
打打应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得20
12秒前
Akim应助科研通管家采纳,获得10
12秒前
英俊的铭应助科研通管家采纳,获得10
12秒前
wanci应助科研通管家采纳,获得10
12秒前
小二郎应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
SciGPT应助科研通管家采纳,获得10
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
Lucas应助科研通管家采纳,获得10
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
rjtmu发布了新的文献求助10
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3523102
求助须知:如何正确求助?哪些是违规求助? 3104073
关于积分的说明 9268807
捐赠科研通 2800934
什么是DOI,文献DOI怎么找? 1537285
邀请新用户注册赠送积分活动 715489
科研通“疑难数据库(出版商)”最低求助积分说明 708825