Multi-OMICS approaches in cancer biology: New era in cancer therapy

组学 计算生物学 基因组学 生物 数据科学 生物信息学 基因组 计算机科学 生物化学 基因
作者
Sohini Chakraborty,Gaurav Sharma,Sricheta Karmakar,Satarupa Banerjee
出处
期刊:Biochimica Et Biophysica Acta: Molecular Basis Of Disease [Elsevier]
卷期号:1870 (5): 167120-167120 被引量:19
标识
DOI:10.1016/j.bbadis.2024.167120
摘要

Innovative multi-omics frameworks integrate diverse datasets from the same patients to enhance our understanding of the molecular and clinical aspects of cancers. Advanced omics and multi-view clustering algorithms present unprecedented opportunities for classifying cancers into subtypes, refining survival predictions and treatment outcomes, and unravelling key pathophysiological processes across various molecular layers. However, with the increasing availability of cost-effective high-throughput technologies (HTT) that generate vast amounts of data, analyzing single layers often falls short of establishing causal relations. Integrating multi-omics data spanning genomes, epigenomes, transcriptomes, proteomes, metabolomes, and microbiomes offers unique prospects to comprehend the underlying biology of complex diseases like cancer. This discussion explores algorithmic frameworks designed to uncover cancer subtypes, disease mechanisms, and methods for identifying pivotal genomic alterations. It also underscores the significance of multi-omics in tumor classifications, diagnostics, and prognostications. Despite its unparalleled advantages, the integration of multi-omics data has been slow to find its way into everyday clinics. A major hurdle is the uneven maturity of different omics approaches and the widening gap between the generation of large datasets and the capacity to process this data. Initiatives promoting the standardization of sample processing and analytical pipelines, as well as multidisciplinary training for experts in data analysis and interpretation, are crucial for translating theoretical findings into practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助小美采纳,获得10
刚刚
上官若男应助小小果妈采纳,获得10
1秒前
manchang完成签到 ,获得积分10
2秒前
完美世界应助开心的幼珊采纳,获得10
5秒前
5秒前
icecream发布了新的文献求助10
6秒前
7秒前
gzw应助雪山飞龙采纳,获得10
8秒前
8秒前
Jasper应助hahahaweiwei采纳,获得10
8秒前
9秒前
锅炉完成签到,获得积分10
10秒前
天天快乐应助Helic采纳,获得10
11秒前
11秒前
qibing Gu发布了新的文献求助10
12秒前
12秒前
仁爱仙人掌完成签到,获得积分20
13秒前
14秒前
哆啦猫发布了新的文献求助10
14秒前
随缘完成签到 ,获得积分10
15秒前
16秒前
17秒前
开放鸵鸟发布了新的文献求助10
17秒前
xiaohan,JIA完成签到,获得积分10
17秒前
Jasper应助聂学雨采纳,获得10
17秒前
小马甲应助Viva采纳,获得10
18秒前
轻松如冬发布了新的文献求助10
19秒前
万能的小叮当完成签到,获得积分10
20秒前
xiaohan,JIA发布了新的文献求助10
20秒前
传奇3应助快乐小熊猫采纳,获得10
22秒前
22秒前
现代秦始皇完成签到 ,获得积分10
22秒前
22秒前
不安溪灵完成签到,获得积分10
22秒前
22秒前
8R60d8应助科研通管家采纳,获得10
22秒前
CodeCraft应助科研通管家采纳,获得10
22秒前
gaochi发布了新的文献求助30
22秒前
我是老大应助科研通管家采纳,获得30
22秒前
22秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135055
求助须知:如何正确求助?哪些是违规求助? 2786055
关于积分的说明 7774839
捐赠科研通 2441865
什么是DOI,文献DOI怎么找? 1298217
科研通“疑难数据库(出版商)”最低求助积分说明 625108
版权声明 600825