Accurate identification of methanol and ethanol gasoline types and rapid detection of the alcohol content using effective chemical information

化学 汽油 甲醇 偏最小二乘回归 变量消去 分析化学(期刊) 色谱法 生物系统 统计 人工智能 有机化学 数学 计算机科学 生物 推论
作者
Ke Li,C. Ding,Jin Zhang,Biao Du,Xiaoping Song,Guixuan Wang,Qi Li,Yinglan Zhang,Zhengdong Zhang
出处
期刊:Talanta [Elsevier]
卷期号:274: 125961-125961 被引量:3
标识
DOI:10.1016/j.talanta.2024.125961
摘要

Methanol and ethanol gasoline are two emerging clean energy sources with different characteristics. To achieve the qualitative identification and quantitative analysis of the alcohols present in methanol and ethanol gasoline, effective chemical information (ECI) models based on the characteristic spectral bands of the near-infrared (NIR) spectra of the methanol and ethanol molecules were developed using the partial least squares discriminant analysis (PLS-DA) and partial least squares (PLS) algorithms. The ECI model was further compared with models built from the full wavenumber (Full) spectra, variable importance in projection (VIP) spectra, and Monte Carlo uninformative variable elimination (MC-UVE) spectra to determine the predictive performance of ECI model. Among the various qualitative identification models, it was found that the ECI-PLS-DA model, which is built using the differences in molecular chemical information between methanol and ethanol, exhibited sensitivity, specificity and accuracy values of 100%. The ECI-PLS-DA model accurately identified methanol gasoline and ethanol gasoline with different contents. In the quantitative analysis model for methanol gasoline, the methanol gasoline and ethanol gasoline ECI-PLS models exhibited the smallest root mean squared error of predictions (RMSEPs) of 0.18 and 0.21% (v/v), respectively, compared to the other models. Meanwhile, the F-test and T-test results revealed that the NIR method employing the ECI-PLS model showed no significant difference compared to the standard method. Compared with other spectral models examined herein, the ECI model demonstrated the highest recognition success and determination accuracy. This study therefore established a highly accurate and rapid determination model for the qualitative identification and quantitative analysis based on chemical structures. It is expected that this model could be extended to the NIR analysis of other physicochemical properties of fuel.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sqqq完成签到 ,获得积分10
1秒前
2953685951完成签到,获得积分10
2秒前
会飞的猪完成签到,获得积分10
3秒前
讨厌鬼完成签到,获得积分10
6秒前
夏未央完成签到,获得积分10
6秒前
小言完成签到,获得积分20
9秒前
MetaMysteria完成签到,获得积分10
11秒前
test_20251231发布了新的文献求助50
13秒前
科研通AI2S应助123456采纳,获得10
13秒前
13秒前
胡蝶完成签到 ,获得积分10
15秒前
无情的井完成签到,获得积分10
15秒前
故事细腻完成签到 ,获得积分10
16秒前
tangz发布了新的文献求助10
16秒前
张姚发布了新的文献求助10
16秒前
完美世界应助XIEQ采纳,获得10
17秒前
whoKnows应助Tom采纳,获得20
19秒前
cc发布了新的文献求助10
20秒前
bkagyin应助科研通管家采纳,获得10
22秒前
1101592875应助科研通管家采纳,获得10
22秒前
科目三应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
爆米花应助科研通管家采纳,获得10
22秒前
思源应助科研通管家采纳,获得30
22秒前
大龙哥886应助科研通管家采纳,获得10
22秒前
香蕉觅云应助科研通管家采纳,获得30
22秒前
宅多点应助科研通管家采纳,获得10
22秒前
1101592875应助科研通管家采纳,获得10
22秒前
22秒前
shhoing应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
orixero应助科研通管家采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
雨姐科研应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
Z1987完成签到,获得积分10
23秒前
宅多点应助科研通管家采纳,获得10
23秒前
雨姐科研应助科研通管家采纳,获得10
23秒前
852应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560110
求助须知:如何正确求助?哪些是违规求助? 4645276
关于积分的说明 14674677
捐赠科研通 4586381
什么是DOI,文献DOI怎么找? 2516410
邀请新用户注册赠送积分活动 1490066
关于科研通互助平台的介绍 1460866