Taylor Approximation of Inventory Policies for One-Warehouse, Multi-Retailer Systems with Demand Feature Information

仓库 特征(语言学) 计算机科学 运筹学 库存管理 业务 微观经济学 产业组织 运营管理 经济 营销 数学 语言学 哲学
作者
Jingkai Huang,Kevin Shang,Yi Yang,Weihua Zhou,Yuan Li
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:1
标识
DOI:10.1287/mnsc.2021.04241
摘要

We consider a distribution system in which retailers replenish perishable goods from a warehouse, which, in turn, replenishes from an outside source. Demand at each retailer depends on exogenous features and a random shock, and unfulfilled demand is lost. The objective is to obtain a data-driven replenishment and allocation policy that minimizes the average inventory cost per time period. The extant data-driven methods either cannot guarantee a feasible solution for out-of-sample feature observations or generate one with excessive computational time. We propose a policy that resolves these issues in two steps. In the first step, we assume that the distributions of features and random shocks are known. We develop an effective heuristic policy by using Taylor expansion to approximate the retailer’s inventory cost. The resulting solution is closed-form, referred to as Taylor Approximation (TA) policy. We show that the TA policy is asymptotically optimal in the number of retailers. In the second step, we apply the linear quantile regression and kernel density estimation to the TA solution to obtain the data-driven policy called Data-Driven Taylor Approximation (DDTA) policy. We prove that the DDTA policy is consistent with the TA policy. A numerical study shows that the DDTA policy is very effective. Using a real data set provided by Fresh Hema, we show that the DDTA policy reduces the average cost by 11.0% compared with Hema’s policy. Finally, we show that the main results still hold in the cases of correlated demand features, positive lead times, and censored demand. This paper was accepted by J. George Shanthikumar, data science. Funding: Y. Yang acknowledges financial support from the NSFC [Grants 72125004, 71821002]. W. Zhou acknowledges financial support from the NSFC [Grants 72192823, 71821002]. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2021.04241 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Dino完成签到,获得积分10
1秒前
斯文败类应助007采纳,获得10
6秒前
seata完成签到,获得积分10
10秒前
雪原白鹿完成签到 ,获得积分10
10秒前
future完成签到 ,获得积分10
11秒前
11秒前
12秒前
情怀应助阔达荣轩采纳,获得10
13秒前
shu发布了新的文献求助30
15秒前
百里千秋完成签到,获得积分10
18秒前
小虎同学完成签到,获得积分10
18秒前
19秒前
Orange应助LELE采纳,获得50
22秒前
百里千秋发布了新的文献求助10
22秒前
阔达荣轩发布了新的文献求助10
25秒前
25秒前
iNk应助科研通管家采纳,获得20
26秒前
科研通AI5应助科研通管家采纳,获得10
26秒前
wanci应助科研通管家采纳,获得10
26秒前
慕青应助科研通管家采纳,获得10
26秒前
在水一方应助科研通管家采纳,获得10
26秒前
26秒前
27秒前
cctv18应助大龙哥886采纳,获得10
29秒前
29秒前
chen发布了新的文献求助10
30秒前
JamesPei应助荆三岁采纳,获得10
32秒前
思源应助shu采纳,获得10
32秒前
壮观以松发布了新的文献求助10
32秒前
ccs发布了新的文献求助10
35秒前
Hezhiyong发布了新的文献求助10
36秒前
36秒前
demo完成签到,获得积分10
36秒前
领导范儿应助heart采纳,获得30
39秒前
砍柴人发布了新的文献求助10
39秒前
雾影觅光完成签到,获得积分10
41秒前
42秒前
Guo1020181完成签到 ,获得积分10
44秒前
zhenxing完成签到,获得积分10
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3755065
求助须知:如何正确求助?哪些是违规求助? 3298314
关于积分的说明 10104502
捐赠科研通 3012928
什么是DOI,文献DOI怎么找? 1654878
邀请新用户注册赠送积分活动 789194
科研通“疑难数据库(出版商)”最低求助积分说明 753233