Taylor Approximation of Inventory Policies for One-Warehouse, Multi-Retailer Systems with Demand Feature Information

仓库 特征(语言学) 计算机科学 运筹学 库存管理 业务 微观经济学 产业组织 运营管理 经济 营销 数学 语言学 哲学
作者
Jingkai Huang,Kevin Shang,Yi Yang,Weihua Zhou,Yuan Li
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:4
标识
DOI:10.1287/mnsc.2021.04241
摘要

We consider a distribution system in which retailers replenish perishable goods from a warehouse, which, in turn, replenishes from an outside source. Demand at each retailer depends on exogenous features and a random shock, and unfulfilled demand is lost. The objective is to obtain a data-driven replenishment and allocation policy that minimizes the average inventory cost per time period. The extant data-driven methods either cannot guarantee a feasible solution for out-of-sample feature observations or generate one with excessive computational time. We propose a policy that resolves these issues in two steps. In the first step, we assume that the distributions of features and random shocks are known. We develop an effective heuristic policy by using Taylor expansion to approximate the retailer’s inventory cost. The resulting solution is closed-form, referred to as Taylor Approximation (TA) policy. We show that the TA policy is asymptotically optimal in the number of retailers. In the second step, we apply the linear quantile regression and kernel density estimation to the TA solution to obtain the data-driven policy called Data-Driven Taylor Approximation (DDTA) policy. We prove that the DDTA policy is consistent with the TA policy. A numerical study shows that the DDTA policy is very effective. Using a real data set provided by Fresh Hema, we show that the DDTA policy reduces the average cost by 11.0% compared with Hema’s policy. Finally, we show that the main results still hold in the cases of correlated demand features, positive lead times, and censored demand. This paper was accepted by J. George Shanthikumar, data science. Funding: Y. Yang acknowledges financial support from the NSFC [Grants 72125004, 71821002]. W. Zhou acknowledges financial support from the NSFC [Grants 72192823, 71821002]. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2021.04241 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助科研通管家采纳,获得10
1秒前
杰尼龟的鱼完成签到 ,获得积分10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
小二郎应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
满意大门完成签到,获得积分10
2秒前
zhonglv7应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
2秒前
坚定晓兰应助科研通管家采纳,获得10
2秒前
grace2026应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
zhonglv7应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
坚定晓兰应助科研通管家采纳,获得10
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
ys完成签到,获得积分10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
无极微光应助科研通管家采纳,获得20
3秒前
段皖顺完成签到 ,获得积分10
3秒前
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5766752
求助须知:如何正确求助?哪些是违规求助? 5566757
关于积分的说明 15413615
捐赠科研通 4900873
什么是DOI,文献DOI怎么找? 2636748
邀请新用户注册赠送积分活动 1584920
关于科研通互助平台的介绍 1540170