Taylor Approximation of Inventory Policies for One-Warehouse, Multi-Retailer Systems with Demand Feature Information

仓库 特征(语言学) 计算机科学 运筹学 库存管理 业务 微观经济学 产业组织 运营管理 经济 营销 数学 语言学 哲学
作者
Jingkai Huang,Kevin Shang,Yi Yang,Weihua Zhou,Yuan Li
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:1
标识
DOI:10.1287/mnsc.2021.04241
摘要

We consider a distribution system in which retailers replenish perishable goods from a warehouse, which, in turn, replenishes from an outside source. Demand at each retailer depends on exogenous features and a random shock, and unfulfilled demand is lost. The objective is to obtain a data-driven replenishment and allocation policy that minimizes the average inventory cost per time period. The extant data-driven methods either cannot guarantee a feasible solution for out-of-sample feature observations or generate one with excessive computational time. We propose a policy that resolves these issues in two steps. In the first step, we assume that the distributions of features and random shocks are known. We develop an effective heuristic policy by using Taylor expansion to approximate the retailer’s inventory cost. The resulting solution is closed-form, referred to as Taylor Approximation (TA) policy. We show that the TA policy is asymptotically optimal in the number of retailers. In the second step, we apply the linear quantile regression and kernel density estimation to the TA solution to obtain the data-driven policy called Data-Driven Taylor Approximation (DDTA) policy. We prove that the DDTA policy is consistent with the TA policy. A numerical study shows that the DDTA policy is very effective. Using a real data set provided by Fresh Hema, we show that the DDTA policy reduces the average cost by 11.0% compared with Hema’s policy. Finally, we show that the main results still hold in the cases of correlated demand features, positive lead times, and censored demand. This paper was accepted by J. George Shanthikumar, data science. Funding: Y. Yang acknowledges financial support from the NSFC [Grants 72125004, 71821002]. W. Zhou acknowledges financial support from the NSFC [Grants 72192823, 71821002]. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2021.04241 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助小王的祝同学采纳,获得10
1秒前
wsbkeyanTong发布了新的文献求助10
1秒前
大小米完成签到,获得积分10
2秒前
小小sci发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
呆萌刺猬完成签到 ,获得积分10
5秒前
xl发布了新的文献求助10
7秒前
8秒前
wsbkeyanTong完成签到,获得积分10
8秒前
田焕焕发布了新的文献求助10
9秒前
Renee应助liq采纳,获得10
9秒前
9秒前
yzj关注了科研通微信公众号
17秒前
桐桐应助lxy采纳,获得10
18秒前
斩封完成签到,获得积分10
20秒前
隐形曼青应助ZZ采纳,获得10
20秒前
斯文败类应助斩封采纳,获得10
23秒前
酷酷的友灵完成签到,获得积分10
23秒前
打打应助lilili采纳,获得10
26秒前
29秒前
29秒前
烟花应助科研通管家采纳,获得10
30秒前
汉堡包应助科研通管家采纳,获得10
30秒前
李爱国应助科研通管家采纳,获得10
30秒前
大模型应助科研通管家采纳,获得10
30秒前
小蘑菇应助科研通管家采纳,获得10
30秒前
31秒前
852应助zzzhw采纳,获得10
33秒前
懵懂的灭男完成签到,获得积分10
33秒前
liujinhui发布了新的文献求助30
34秒前
Glow发布了新的文献求助10
35秒前
cywzhcr应助冯万里采纳,获得10
36秒前
情怀应助聪明的平萱采纳,获得10
37秒前
田焕焕完成签到,获得积分20
38秒前
华仔完成签到 ,获得积分10
39秒前
研友_VZG7GZ应助Glow采纳,获得10
45秒前
45秒前
旺旺碎发布了新的文献求助10
45秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161006
求助须知:如何正确求助?哪些是违规求助? 2812229
关于积分的说明 7895058
捐赠科研通 2471142
什么是DOI,文献DOI怎么找? 1315908
科研通“疑难数据库(出版商)”最低求助积分说明 631069
版权声明 602086