亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Taylor Approximation of Inventory Policies for One-Warehouse, Multi-Retailer Systems with Demand Feature Information

仓库 特征(语言学) 计算机科学 运筹学 库存管理 业务 微观经济学 产业组织 运营管理 经济 营销 数学 语言学 哲学
作者
Jingkai Huang,Kevin Shang,Yi Yang,Weihua Zhou,Yuan Li
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:4
标识
DOI:10.1287/mnsc.2021.04241
摘要

We consider a distribution system in which retailers replenish perishable goods from a warehouse, which, in turn, replenishes from an outside source. Demand at each retailer depends on exogenous features and a random shock, and unfulfilled demand is lost. The objective is to obtain a data-driven replenishment and allocation policy that minimizes the average inventory cost per time period. The extant data-driven methods either cannot guarantee a feasible solution for out-of-sample feature observations or generate one with excessive computational time. We propose a policy that resolves these issues in two steps. In the first step, we assume that the distributions of features and random shocks are known. We develop an effective heuristic policy by using Taylor expansion to approximate the retailer’s inventory cost. The resulting solution is closed-form, referred to as Taylor Approximation (TA) policy. We show that the TA policy is asymptotically optimal in the number of retailers. In the second step, we apply the linear quantile regression and kernel density estimation to the TA solution to obtain the data-driven policy called Data-Driven Taylor Approximation (DDTA) policy. We prove that the DDTA policy is consistent with the TA policy. A numerical study shows that the DDTA policy is very effective. Using a real data set provided by Fresh Hema, we show that the DDTA policy reduces the average cost by 11.0% compared with Hema’s policy. Finally, we show that the main results still hold in the cases of correlated demand features, positive lead times, and censored demand. This paper was accepted by J. George Shanthikumar, data science. Funding: Y. Yang acknowledges financial support from the NSFC [Grants 72125004, 71821002]. W. Zhou acknowledges financial support from the NSFC [Grants 72192823, 71821002]. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2021.04241 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
orixero应助科研通管家采纳,获得10
16秒前
CodeCraft应助学术悍匪采纳,获得10
39秒前
47秒前
学术悍匪完成签到,获得积分10
49秒前
学术悍匪发布了新的文献求助10
52秒前
54秒前
优美香露发布了新的文献求助80
58秒前
58秒前
酷炫翠柏发布了新的文献求助10
1分钟前
万能图书馆应助tuyfytjt采纳,获得10
1分钟前
小丸子和zz完成签到 ,获得积分10
1分钟前
1分钟前
asd1576562308完成签到 ,获得积分10
1分钟前
tuyfytjt发布了新的文献求助10
1分钟前
yhw完成签到,获得积分10
1分钟前
meow完成签到 ,获得积分10
1分钟前
科研通AI2S应助酷炫翠柏采纳,获得30
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
梵莫完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
一二发布了新的文献求助10
2分钟前
无极微光应助Dyying采纳,获得20
2分钟前
XueXiTong完成签到,获得积分10
2分钟前
大刘发布了新的文献求助10
2分钟前
Bin_Liu发布了新的文献求助10
2分钟前
2分钟前
Orange应助凡华采纳,获得10
2分钟前
yang发布了新的文献求助10
2分钟前
大刘完成签到,获得积分10
2分钟前
Thanks完成签到 ,获得积分10
3分钟前
3分钟前
上官若男应助欣喜的广山采纳,获得10
3分钟前
duzhi完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657943
求助须知:如何正确求助?哪些是违规求助? 4814668
关于积分的说明 15080640
捐赠科研通 4816211
什么是DOI,文献DOI怎么找? 2577199
邀请新用户注册赠送积分活动 1532206
关于科研通互助平台的介绍 1490776