Parallel and energy conservative/dissipative schemes for sine–Gordon and Allen–Cahn equations

耗散系统 正弦 艾伦-卡恩方程 sine-Gordon方程 数学 能量(信号处理) 经典力学 物理 应用数学 数学分析 几何学 热力学 非线性系统 量子力学 孤子 统计
作者
Wenjun Cai,Junsheng Ren,Xuelong Gu,Yushun Wang
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:425: 116938-116938
标识
DOI:10.1016/j.cma.2024.116938
摘要

The sine–Gordon and Allen–Cahn equations are two typical models in the fields of conservative Hamiltonian systems and dissipative gradient flows, respectively. As the demand for numerical methods that respect intrinsic energy conservation/dissipation laws turns into a fundamental principle, the subsequent computational efficiency is getting more and more desired. Linearly implicit methods, which only require solutions of linear algebraic systems at each time step, have become a popular way to design efficient schemes. However, the overall computational cost of these methods depends heavily on the speed at which the linear system can be solved. In this paper, we propose an alternative approach for developing highly efficient energy-conservative or dissipative schemes for the sine–Gordon and Allen–Cahn equations. Our approach is based on spatial finite difference approximations and is fully implicit at first glance, but actually it is completely decoupled point by point, allowing for the implementation of a scalar nonlinear equation successively with a lower complexity that is comparable only to the degrees of freedom. We further establish the connections between our approach and the classic Itoh–Abe discrete gradient and the partitioned averaged vector field methods, and then propose the generalized Itoh–Abe discrete gradient method, which offers great flexibility in the ordering of updating each unknown point. One immediate benefit is that we can specifically choose an ordering to achieve a naturally parallel computation of the resulting scheme, significantly improving the computational efficiency. Various numerical experiments are presented to illustrate the performance of the proposed schemes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助磐xst采纳,获得10
2秒前
原野完成签到,获得积分10
2秒前
科研通AI6应助Nancy采纳,获得10
2秒前
2秒前
huilin发布了新的文献求助10
2秒前
3秒前
niNe3YUE应助薄荷采纳,获得10
3秒前
3秒前
何木萧完成签到,获得积分10
3秒前
丫丫完成签到,获得积分10
5秒前
Ava应助缥缈傥采纳,获得10
5秒前
6秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
huilin完成签到,获得积分10
8秒前
wenjing发布了新的文献求助10
9秒前
aaa发布了新的文献求助10
9秒前
是个哑巴完成签到,获得积分10
9秒前
Chicophy发布了新的文献求助10
9秒前
10秒前
洪山老狗发布了新的文献求助10
10秒前
11秒前
shengch0234完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
碧蓝之柔完成签到,获得积分10
12秒前
12秒前
伞下铭发布了新的文献求助10
13秒前
tree发布了新的文献求助10
13秒前
毕业完成签到,获得积分10
13秒前
DMPK完成签到,获得积分10
13秒前
仁爱的冰夏完成签到,获得积分10
14秒前
是个哑巴发布了新的文献求助10
14秒前
上官若男应助VIOLET采纳,获得10
14秒前
Y1B发布了新的文献求助10
14秒前
1an发布了新的文献求助10
15秒前
15秒前
15秒前
在水一方应助小石头采纳,获得10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667047
求助须知:如何正确求助?哪些是违规求助? 4883873
关于积分的说明 15118527
捐赠科研通 4825937
什么是DOI,文献DOI怎么找? 2583643
邀请新用户注册赠送积分活动 1537807
关于科研通互助平台的介绍 1496002