Using students’ cognitive, affective, and demographic characteristics to predict their understanding of computational thinking concepts: a machine learning-based approach

认知 计算思维 心理学 计算机科学 认知心理学 数学教育 教育技术 人工智能 认知科学 神经科学
作者
Siu Cheung Kong,Wei Shen
出处
期刊:Interactive Learning Environments [Taylor & Francis]
卷期号:: 1-14 被引量:1
标识
DOI:10.1080/10494820.2024.2331148
摘要

Logistic regression models have traditionally been used to identify the factors contributing to students' conceptual understanding. With the advancement of the machine learning-based research approach, there are reports that some machine learning algorithms outperform logistic regression models in terms of prediction. In this study, we collected cognitive, affective, and demographic data from 4,142 primary students as features to predict their understanding of computational thinking (CT) concepts. We identified and used five popularly used machine learning models. All five machine learning models outperformed the logistic regression model, with the extreme gradient boosting (XGBoost) model achieving the highest predictive accuracy. We used these features and the K-means algorithm of the unsupervised clustering technique to identify four optimal clusters of students. By comparing the representative students from each of the four clusters, selected by the t-distributed stochastic neighbour embedding algorithm, we found that each cluster had its characteristics. For example, one cluster consisted of students who outperformed students in the other three clusters in mathematics, scored highest in prior experience in programming, and used computers and the Internet most frequently. By identifying the characteristics of these clusters, pedagogical design, and resource support can be proposed to support students' learning of CT concepts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
张巨锋完成签到,获得积分10
1秒前
bhyughhij完成签到,获得积分10
1秒前
YJH完成签到,获得积分10
1秒前
kingsley05完成签到,获得积分20
1秒前
小岚花完成签到,获得积分10
1秒前
cc完成签到,获得积分10
2秒前
ysx_fish完成签到,获得积分10
2秒前
文献看了吗完成签到,获得积分10
2秒前
汉堡包应助nml采纳,获得10
3秒前
斯文败类应助单耳元采纳,获得10
4秒前
5秒前
5秒前
大气归尘完成签到,获得积分20
5秒前
Uoaoing发布了新的文献求助10
6秒前
shilohkid完成签到,获得积分10
6秒前
精明怜南发布了新的文献求助100
7秒前
7秒前
7秒前
AronHUANG完成签到,获得积分10
8秒前
dzjin完成签到,获得积分10
8秒前
阿氏之光完成签到,获得积分10
9秒前
9秒前
隐形曼青应助slow采纳,获得10
9秒前
9秒前
9秒前
遇上就这样吧应助shilohkid采纳,获得10
10秒前
jjy发布了新的文献求助20
10秒前
11秒前
11秒前
11秒前
12秒前
12秒前
nannan完成签到,获得积分10
13秒前
13秒前
fox2shj完成签到,获得积分10
13秒前
13秒前
Uoaoing完成签到,获得积分10
13秒前
14秒前
乐观向松发布了新的文献求助10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992393
求助须知:如何正确求助?哪些是违规求助? 3533397
关于积分的说明 11262186
捐赠科研通 3272927
什么是DOI,文献DOI怎么找? 1805895
邀请新用户注册赠送积分活动 882792
科研通“疑难数据库(出版商)”最低求助积分说明 809474