Using students’ cognitive, affective, and demographic characteristics to predict their understanding of computational thinking concepts: a machine learning-based approach

认知 计算思维 心理学 计算机科学 认知心理学 数学教育 教育技术 人工智能 认知科学 神经科学
作者
Siu Cheung Kong,Wei Shen
出处
期刊:Interactive Learning Environments [Informa]
卷期号:: 1-14 被引量:1
标识
DOI:10.1080/10494820.2024.2331148
摘要

Logistic regression models have traditionally been used to identify the factors contributing to students' conceptual understanding. With the advancement of the machine learning-based research approach, there are reports that some machine learning algorithms outperform logistic regression models in terms of prediction. In this study, we collected cognitive, affective, and demographic data from 4,142 primary students as features to predict their understanding of computational thinking (CT) concepts. We identified and used five popularly used machine learning models. All five machine learning models outperformed the logistic regression model, with the extreme gradient boosting (XGBoost) model achieving the highest predictive accuracy. We used these features and the K-means algorithm of the unsupervised clustering technique to identify four optimal clusters of students. By comparing the representative students from each of the four clusters, selected by the t-distributed stochastic neighbour embedding algorithm, we found that each cluster had its characteristics. For example, one cluster consisted of students who outperformed students in the other three clusters in mathematics, scored highest in prior experience in programming, and used computers and the Internet most frequently. By identifying the characteristics of these clusters, pedagogical design, and resource support can be proposed to support students' learning of CT concepts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洋洋呀完成签到,获得积分10
刚刚
ramsey33完成签到,获得积分10
1秒前
我爱大黄昏完成签到 ,获得积分10
2秒前
2秒前
2秒前
Zheng发布了新的文献求助10
2秒前
tlrelax发布了新的文献求助50
2秒前
36456657应助KIKO采纳,获得10
2秒前
福star高照完成签到,获得积分10
3秒前
4秒前
欧阳惜筠完成签到,获得积分10
6秒前
1111111111完成签到,获得积分10
6秒前
6秒前
嗷嗷嗷啊发布了新的文献求助10
6秒前
英俊的铭应助wsqg123采纳,获得10
7秒前
MingqingFang完成签到,获得积分10
7秒前
MillionMiao完成签到,获得积分10
8秒前
斯文败类应助Zheng采纳,获得10
8秒前
思源应助忧郁平文采纳,获得10
8秒前
9秒前
磊2024完成签到,获得积分10
9秒前
Foura完成签到,获得积分10
10秒前
KIKO完成签到,获得积分10
11秒前
honeymoon完成签到,获得积分10
11秒前
赛赛驳回了iNk应助
12秒前
111123123123完成签到,获得积分10
12秒前
Joyan完成签到,获得积分10
13秒前
13秒前
万能图书馆应助teriteri采纳,获得10
14秒前
Annora发布了新的文献求助10
14秒前
15秒前
czzlancer完成签到,获得积分10
15秒前
BIG川完成签到,获得积分20
15秒前
科研通AI2S应助111123123123采纳,获得10
16秒前
popo完成签到,获得积分10
17秒前
忧郁平文完成签到,获得积分10
17秒前
大力水手完成签到,获得积分10
18秒前
落林樾完成签到 ,获得积分10
18秒前
18秒前
鲍复天完成签到,获得积分10
19秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3413593
求助须知:如何正确求助?哪些是违规求助? 3015897
关于积分的说明 8872742
捐赠科研通 2703636
什么是DOI,文献DOI怎么找? 1482380
科研通“疑难数据库(出版商)”最低求助积分说明 685272
邀请新用户注册赠送积分活动 679994