Using students’ cognitive, affective, and demographic characteristics to predict their understanding of computational thinking concepts: a machine learning-based approach

认知 计算思维 心理学 计算机科学 认知心理学 数学教育 教育技术 人工智能 认知科学 神经科学
作者
Siu Cheung Kong,Wei Shen
出处
期刊:Interactive Learning Environments [Taylor & Francis]
卷期号:: 1-14 被引量:1
标识
DOI:10.1080/10494820.2024.2331148
摘要

Logistic regression models have traditionally been used to identify the factors contributing to students' conceptual understanding. With the advancement of the machine learning-based research approach, there are reports that some machine learning algorithms outperform logistic regression models in terms of prediction. In this study, we collected cognitive, affective, and demographic data from 4,142 primary students as features to predict their understanding of computational thinking (CT) concepts. We identified and used five popularly used machine learning models. All five machine learning models outperformed the logistic regression model, with the extreme gradient boosting (XGBoost) model achieving the highest predictive accuracy. We used these features and the K-means algorithm of the unsupervised clustering technique to identify four optimal clusters of students. By comparing the representative students from each of the four clusters, selected by the t-distributed stochastic neighbour embedding algorithm, we found that each cluster had its characteristics. For example, one cluster consisted of students who outperformed students in the other three clusters in mathematics, scored highest in prior experience in programming, and used computers and the Internet most frequently. By identifying the characteristics of these clusters, pedagogical design, and resource support can be proposed to support students' learning of CT concepts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jxz9510完成签到 ,获得积分10
刚刚
在路上完成签到,获得积分10
1秒前
Owen应助幸福的蓝血采纳,获得10
1秒前
mt1314完成签到 ,获得积分10
1秒前
Hello应助望海皆星辰采纳,获得10
1秒前
qian完成签到,获得积分10
1秒前
风趣的洙完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
sxy完成签到,获得积分20
2秒前
qin发布了新的文献求助10
2秒前
Komorebi完成签到,获得积分10
2秒前
zcz驳回了酷波er应助
2秒前
www发布了新的文献求助10
3秒前
3秒前
Jasper应助孤独的砖头采纳,获得10
3秒前
红柚发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
5秒前
大意的乐菱完成签到,获得积分10
6秒前
爆米花应助伟伟采纳,获得10
6秒前
6秒前
6秒前
研究生end应助一路硕博采纳,获得50
6秒前
7秒前
7秒前
可爱的函函应助哈哈哈哈采纳,获得10
7秒前
标致曼香发布了新的文献求助10
7秒前
7秒前
ss完成签到,获得积分10
8秒前
zy完成签到,获得积分10
8秒前
小菜鸟发布了新的文献求助10
9秒前
海棠发布了新的文献求助10
9秒前
GCD发布了新的文献求助10
10秒前
现代破茧发布了新的文献求助30
10秒前
激情的明杰完成签到,获得积分10
10秒前
哭泣尔安完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Spatial Econometrics: Spatial Autoregressive Models (World Scientific Series on Econometrics and Statistics Book 1) 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Thomas Hobbes' Mechanical Conception of Nature 500
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5111177
求助须知:如何正确求助?哪些是违规求助? 4319430
关于积分的说明 13457835
捐赠科研通 4149833
什么是DOI,文献DOI怎么找? 2273805
邀请新用户注册赠送积分活动 1275926
关于科研通互助平台的介绍 1214145