亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Using students’ cognitive, affective, and demographic characteristics to predict their understanding of computational thinking concepts: a machine learning-based approach

认知 计算思维 心理学 计算机科学 认知心理学 数学教育 教育技术 人工智能 认知科学 神经科学
作者
Siu Cheung Kong,Wei Shen
出处
期刊:Interactive Learning Environments [Informa]
卷期号:: 1-14 被引量:1
标识
DOI:10.1080/10494820.2024.2331148
摘要

Logistic regression models have traditionally been used to identify the factors contributing to students' conceptual understanding. With the advancement of the machine learning-based research approach, there are reports that some machine learning algorithms outperform logistic regression models in terms of prediction. In this study, we collected cognitive, affective, and demographic data from 4,142 primary students as features to predict their understanding of computational thinking (CT) concepts. We identified and used five popularly used machine learning models. All five machine learning models outperformed the logistic regression model, with the extreme gradient boosting (XGBoost) model achieving the highest predictive accuracy. We used these features and the K-means algorithm of the unsupervised clustering technique to identify four optimal clusters of students. By comparing the representative students from each of the four clusters, selected by the t-distributed stochastic neighbour embedding algorithm, we found that each cluster had its characteristics. For example, one cluster consisted of students who outperformed students in the other three clusters in mathematics, scored highest in prior experience in programming, and used computers and the Internet most frequently. By identifying the characteristics of these clusters, pedagogical design, and resource support can be proposed to support students' learning of CT concepts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
仁爱保温杯发布了新的文献求助150
1秒前
单薄的绮兰完成签到 ,获得积分10
5秒前
lemon发布了新的文献求助10
5秒前
10秒前
13秒前
14秒前
linsen发布了新的文献求助10
15秒前
16秒前
脑洞疼应助lemon采纳,获得10
16秒前
团宝妞宝完成签到,获得积分10
19秒前
19秒前
zuolan完成签到,获得积分10
19秒前
凉凉发布了新的文献求助10
21秒前
Thanks完成签到 ,获得积分10
21秒前
星海梦幻完成签到 ,获得积分10
22秒前
Paris完成签到 ,获得积分10
24秒前
Moo5_zzZ发布了新的文献求助30
24秒前
liulu完成签到,获得积分10
32秒前
32秒前
可爱的函函应助liulu采纳,获得30
37秒前
Yygz314完成签到,获得积分10
41秒前
王敏娜完成签到 ,获得积分10
42秒前
48秒前
Sober完成签到 ,获得积分10
54秒前
凉凉完成签到,获得积分10
55秒前
qq完成签到 ,获得积分10
55秒前
58秒前
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
ding应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Moo5_zzZ发布了新的文献求助30
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
anthonyxing发布了新的文献求助10
1分钟前
1分钟前
柳如烟完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543024
求助须知:如何正确求助?哪些是违规求助? 4629142
关于积分的说明 14610916
捐赠科研通 4570411
什么是DOI,文献DOI怎么找? 2505751
邀请新用户注册赠送积分活动 1483053
关于科研通互助平台的介绍 1454364