TCJA-SNN: Temporal-Channel Joint Attention for Spiking Neural Networks

尖峰神经网络 计算机科学 人工智能 神经形态工程学 MNIST数据库 卷积神经网络 模式识别(心理学) 机器学习 人工神经网络
作者
Ruijie Zhu,Malu Zhang,Qihang Zhao,Haoyu Deng,Yule Duan,Liang-Jian Deng
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:18
标识
DOI:10.1109/tnnls.2024.3377717
摘要

Spiking neural networks (SNNs) are attracting widespread interest due to their biological plausibility, energy efficiency, and powerful spatiotemporal information representation ability. Given the critical role of attention mechanisms in enhancing neural network performance, the integration of SNNs and attention mechanisms exhibits tremendous potential to deliver energy-efficient and high-performance computing paradigms. In this article, we present a novel temporal-channel joint attention mechanism for SNNs, referred to as TCJA-SNN. The proposed TCJA-SNN framework can effectively assess the significance of spike sequence from both spatial and temporal dimensions. More specifically, our essential technical contribution lies on: 1) we employ the squeeze operation to compress the spike stream into an average matrix. Then, we leverage two local attention mechanisms based on efficient 1-D convolutions to facilitate comprehensive feature extraction at the temporal and channel levels independently and 2) we introduce the cross-convolutional fusion (CCF) layer as a novel approach to model the interdependencies between the temporal and channel scopes. This layer effectively breaks the independence of these two dimensions and enables the interaction between features. Experimental results demonstrate that the proposed TCJA-SNN outperforms the state-of-the-art (SOTA) on all standard static and neuromorphic datasets, including Fashion-MNIST, CIFAR10, CIFAR100, CIFAR10-DVS, N-Caltech 101, and DVS128 Gesture. Furthermore, we effectively apply the TCJA-SNN framework to image generation tasks by leveraging a variation autoencoder. To the best of our knowledge, this study is the first instance where the SNN-attention mechanism has been employed for high-level classification and low-level generation tasks. Our implementation codes are available at https://github.com/ridgerchu/TCJA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
十一完成签到,获得积分10
4秒前
4秒前
美罗培南完成签到,获得积分10
4秒前
超级的笑蓝完成签到,获得积分10
5秒前
6秒前
tataq发布了新的文献求助10
7秒前
11秒前
xinyi完成签到,获得积分10
11秒前
12秒前
12秒前
赘婿应助tataq采纳,获得10
13秒前
王大饼发布了新的文献求助10
14秒前
杨俊锋发布了新的文献求助10
16秒前
16秒前
在水一方应助沉默的幻枫采纳,获得10
16秒前
完美世界应助niuniu采纳,获得10
17秒前
情怀应助dyy采纳,获得10
17秒前
17秒前
18秒前
跳跃的浩阑发布了新的文献求助200
19秒前
恰恰完成签到,获得积分10
21秒前
22秒前
22秒前
Bennyz发布了新的文献求助10
22秒前
养猫的路飞完成签到,获得积分10
24秒前
24秒前
从容的雨灵完成签到,获得积分10
25秒前
Orange应助背后丹妗采纳,获得10
25秒前
科研通AI5应助烂漫的幻露采纳,获得10
25秒前
慕青应助科研鸟采纳,获得10
25秒前
YifanWang应助初七采纳,获得30
26秒前
科研通AI5应助冷傲的傲霜采纳,获得10
27秒前
27秒前
冷艳的冬萱完成签到 ,获得积分10
28秒前
Inuit完成签到,获得积分10
29秒前
niuniu发布了新的文献求助10
29秒前
kingsley320发布了新的文献求助10
29秒前
32秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672470
求助须知:如何正确求助?哪些是违规求助? 3228781
关于积分的说明 9781944
捐赠科研通 2939186
什么是DOI,文献DOI怎么找? 1610704
邀请新用户注册赠送积分活动 760696
科研通“疑难数据库(出版商)”最低求助积分说明 736174