尖峰神经网络
计算机科学
人工智能
神经形态工程学
MNIST数据库
卷积神经网络
模式识别(心理学)
机器学习
人工神经网络
作者
Ruijie Zhu,Malu Zhang,Qihang Zhao,Haoyu Deng,Yule Duan,Liang-Jian Deng
标识
DOI:10.1109/tnnls.2024.3377717
摘要
Spiking neural networks (SNNs) are attracting widespread interest due to their biological plausibility, energy efficiency, and powerful spatiotemporal information representation ability. Given the critical role of attention mechanisms in enhancing neural network performance, the integration of SNNs and attention mechanisms exhibits tremendous potential to deliver energy-efficient and high-performance computing paradigms. In this article, we present a novel temporal-channel joint attention mechanism for SNNs, referred to as TCJA-SNN. The proposed TCJA-SNN framework can effectively assess the significance of spike sequence from both spatial and temporal dimensions. More specifically, our essential technical contribution lies on: 1) we employ the squeeze operation to compress the spike stream into an average matrix. Then, we leverage two local attention mechanisms based on efficient 1-D convolutions to facilitate comprehensive feature extraction at the temporal and channel levels independently and 2) we introduce the cross-convolutional fusion (CCF) layer as a novel approach to model the interdependencies between the temporal and channel scopes. This layer effectively breaks the independence of these two dimensions and enables the interaction between features. Experimental results demonstrate that the proposed TCJA-SNN outperforms the state-of-the-art (SOTA) on all standard static and neuromorphic datasets, including Fashion-MNIST, CIFAR10, CIFAR100, CIFAR10-DVS, N-Caltech 101, and DVS128 Gesture. Furthermore, we effectively apply the TCJA-SNN framework to image generation tasks by leveraging a variation autoencoder. To the best of our knowledge, this study is the first instance where the SNN-attention mechanism has been employed for high-level classification and low-level generation tasks. Our implementation codes are available at https://github.com/ridgerchu/TCJA.
科研通智能强力驱动
Strongly Powered by AbleSci AI