Population Neuroscience: Understanding Concepts of Generalizability and Transportability and Their Application to Improving the Public’s Health

概化理论 可解释性 人口 样品(材料) 样本量测定 心理学 数据科学 计算机科学 人工智能 统计 医学 发展心理学 数学 环境卫生 化学 色谱法
作者
Katherine M. Keyes,Diana Pakserian,Kara E. Rudolph,Giovanni Abrahão Salum,Elizabeth A. Stuart
出处
期刊:Current topics in behavioral neurosciences [Springer Science+Business Media]
被引量:1
标识
DOI:10.1007/7854_2024_465
摘要

In population neuroscience, samples are not often selected with equal or known probability from an underlying population of interest; in other words, samples are not often formally representative of a specified underlying population. This chapter provides an overview of an epidemiological approach to considering the implications of selective participation on the value of our results for population health. We discuss definitions of generalizability and transportability, given the growing recognition that generalizability and transportability are central for interpreting data that are aiming to be population-based. We provide evidence that differences in the prevalence of effect measure modifiers between a study sample and a target population will lead to a lack of generalizability and transportability. We provide an example of an association between a poly-genetic risk score and depression, showing how an internally valid association can differ based on the prevalence of effect measure modifiers. We show that when estimating associations, inferences from a study sample to a population can depend on clearly defining a target population. Given that representative sampling from explicitly defined target populations may not be feasible or realistic in many situations, especially given the sample sizes needed for statistical power for many exposures of interest (and especially when interactions are being tested), researchers should be well versed in tools available to enhance the interpretability of samples regarding target populations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dream完成签到 ,获得积分10
1秒前
Aki_27完成签到,获得积分10
2秒前
2秒前
3秒前
年年年年发布了新的文献求助10
3秒前
3秒前
陈AQ完成签到,获得积分10
3秒前
鱿鱼完成签到,获得积分10
3秒前
3秒前
3秒前
小高完成签到 ,获得积分10
4秒前
小马甲应助陈大侠采纳,获得10
4秒前
4秒前
cg666发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助30
8秒前
汤纪宇发布了新的文献求助30
9秒前
9秒前
9秒前
LO一一VE完成签到,获得积分10
10秒前
领导范儿应助桃花岛岛主采纳,获得10
10秒前
10秒前
耶的猫发布了新的文献求助10
11秒前
谨慎乐安发布了新的文献求助30
12秒前
hhhh发布了新的文献求助10
12秒前
自由的乌完成签到,获得积分20
12秒前
青塘龙仔发布了新的文献求助10
13秒前
11发布了新的文献求助10
13秒前
16秒前
jjj完成签到,获得积分10
16秒前
LQC0128完成签到,获得积分10
16秒前
16秒前
一碗饭1982发布了新的文献求助20
16秒前
自由的乌发布了新的文献求助10
17秒前
BowieHuang应助heth采纳,获得10
17秒前
孤独的根号三完成签到,获得积分10
17秒前
罗英完成签到,获得积分10
17秒前
18秒前
春和景明完成签到,获得积分10
18秒前
汤纪宇完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717929
求助须知:如何正确求助?哪些是违规求助? 5249249
关于积分的说明 15283791
捐赠科研通 4867991
什么是DOI,文献DOI怎么找? 2614002
邀请新用户注册赠送积分活动 1563914
关于科研通互助平台的介绍 1521377