FluPMT: Prediction of Predominant Strains of Influenza A Viruses Via Multi-task Learning

血凝素(流感) 任务(项目管理) 计算机科学 病毒 流感疫苗 甲型流感病毒 计算生物学 生物 病毒学 管理 经济
作者
Changfeng Cai,Jianghui Li,Yuan-Ling Xia,Weihua Li
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:21 (5): 1254-1263 被引量:3
标识
DOI:10.1109/tcbb.2024.3378468
摘要

Seasonal influenza vaccines play a crucial role in saving numerous lives annually. However, the constant evolution of the influenza A virus necessitates frequent vaccine updates to ensure its ongoing effectiveness. The decision to develop a new vaccine strain is generally based on the assessment of the current predominant strains. Nevertheless, the process of vaccine production and distribution is very time-consuming, leaving a window for the emergence of new variants that could decrease vaccine effectiveness, so predictions of influenza A virus evolution can inform vaccine evaluation and selection. Hence, we present FluPMT, a novel sequence prediction model that applies an encoder-decoder architecture to predict the hemagglutinin (HA) protein sequence of the upcoming season's predominant strain by capturing the patterns of evolution of influenza A viruses. Specifically, we employ time series to model the evolution of influenza A viruses, and utilize attention mechanisms to explore dependencies among residues of sequences. Additionally, antigenic distance prediction based on graph network representation learning is incorporated into the sequence prediction as an auxiliary task through a multi-task learning framework. Experimental results on two influenza datasets highlight the exceptional predictive performance of FluPMT, offering valuable insights into virus evolutionary dynamics, as well as vaccine evaluation and production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱芷容发布了新的文献求助10
刚刚
动听梨愁完成签到,获得积分10
1秒前
星辰大海应助bluesky采纳,获得10
2秒前
星辰大海应助盛夏蔚来采纳,获得10
2秒前
Embrace发布了新的文献求助10
2秒前
wdy111举报Ann求助涉嫌违规
3秒前
3秒前
dhts应助比巴卜采纳,获得10
4秒前
归尘发布了新的文献求助10
5秒前
5秒前
5秒前
脑洞疼应助Joe采纳,获得20
5秒前
7秒前
李雯完成签到,获得积分10
7秒前
上官若男应助kassidy采纳,获得10
8秒前
夕沫发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
ws发布了新的文献求助10
9秒前
10秒前
10秒前
书记完成签到,获得积分10
11秒前
土豆丝P完成签到,获得积分10
12秒前
Wind发布了新的文献求助10
13秒前
92626完成签到,获得积分10
13秒前
13秒前
13秒前
SYLH应助云枝采纳,获得10
14秒前
LArry发布了新的文献求助10
15秒前
hahaha发布了新的文献求助10
16秒前
漾黎发布了新的文献求助10
17秒前
香蕉觅云应助可爱芷容采纳,获得10
18秒前
Orange应助钱小二采纳,获得10
18秒前
18秒前
快乐完成签到,获得积分10
18秒前
杨程蛟发布了新的文献求助10
19秒前
酷波er应助ping采纳,获得10
19秒前
19秒前
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653