Modeling three-dimensional T-cell motility using clustering and hidden Markov models

运动性 人口 聚类分析 计算机科学 马尔可夫链 隐马尔可夫模型 生物 生物系统 人工智能 细胞生物学 机器学习 人口学 社会学
作者
Elaheh Torkashvand
出处
期刊:Statistical Methods in Medical Research [SAGE]
卷期号:32 (7): 1318-1337
标识
DOI:10.1177/09622802231172041
摘要

Recent advances in imaging technologies now allow for real-time tracking of fast-moving immune cells as they search for targets such as pathogens and tumor cells through complex three-dimensional tissues. Cytotoxic T cells are specialized immune cells that continually scan tissues for such targets to engage and kill, and have emerged as the principle mediators of breakthrough immunotherapies against cancers. Modeling the way these T cells move is of great value in furthering our understanding of their collective search efficiency. T-cell motility is characterized by heterogeneity at two levels: (a) Individual cells display different distributions of translational speeds and turning angles, and (b) each cell can during a given track, its motility, switch between local search and directional motion. Despite a likely considerable influence on a motile population’s search performance, statistical models that accurately capture both such heterogeneities in a distinguishing manner are lacking. Here, we model three-dimensional T-cell trajectories through a spherical representation of their incremental steps and compare model outputs to real-world motility data from primary T cells navigating physiological environments. T cells in a population are clustered based on their directional persistence and characteristic “step lengths” therein capturing between-cell heterogeneity. The motility dynamics of cells within each cluster are individually modeled through hidden Markov model to capture within-cell transitions between local and more extensive search patterns. We explore the importance of explicitly capturing altered motility patterns when cells lie in close proximity to one another, through a non-homogenous hidden Markov model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李海平发布了新的文献求助10
刚刚
wanci应助碳土不凡采纳,获得10
1秒前
3秒前
明天过后完成签到,获得积分10
3秒前
瘦瘦小熊猫完成签到,获得积分20
3秒前
5秒前
2113发布了新的文献求助10
7秒前
8秒前
张超完成签到,获得积分10
8秒前
连长完成签到,获得积分10
9秒前
11秒前
11秒前
小孙发布了新的文献求助10
12秒前
深情不弱发布了新的文献求助10
12秒前
要死要活着完成签到,获得积分20
13秒前
我是老大应助小黄采纳,获得10
14秒前
猪琳发布了新的文献求助10
15秒前
天真如松发布了新的文献求助10
15秒前
顾矜应助holmes采纳,获得10
16秒前
MMMV完成签到,获得积分10
16秒前
18秒前
李爱国应助2113采纳,获得10
18秒前
19秒前
开放沛柔完成签到,获得积分10
19秒前
开朗黑猫完成签到,获得积分10
20秒前
Owen应助剪影改采纳,获得10
21秒前
曾经的冰淇淋完成签到,获得积分10
22秒前
lmfffff发布了新的文献求助10
23秒前
23秒前
Jasper应助天真如松采纳,获得10
24秒前
有机发布了新的文献求助10
24秒前
wangsiyuan完成签到 ,获得积分10
25秒前
25秒前
氟马西尼发布了新的文献求助10
25秒前
27秒前
英姑应助科研通管家采纳,获得10
27秒前
打打应助科研通管家采纳,获得10
28秒前
ceeray23应助科研通管家采纳,获得10
28秒前
orixero应助科研通管家采纳,获得10
28秒前
28秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462603
求助须知:如何正确求助?哪些是违规求助? 3056160
关于积分的说明 9050826
捐赠科研通 2745793
什么是DOI,文献DOI怎么找? 1506578
科研通“疑难数据库(出版商)”最低求助积分说明 696165
邀请新用户注册赠送积分活动 695677