单线态氧
纳米材料
钯
化学
光敏剂
纳米技术
卟啉
吸附
共价键
材料科学
细菌
组合化学
光化学
催化作用
有机化学
氧气
生物
遗传学
作者
Yanhong Li,Quanbo Wang,Xinyan Qu,Jing Tian,Xiaomei Zhang
标识
DOI:10.1016/j.jcis.2023.05.190
摘要
In the face of increasing bacterial resistance, design of high-performing and dual-functional nanomaterials to satisfy the requirements for both detecting and eradicating bacteria is of immense importance, but still remains a great challenge. Herein, a hierarchically three-dimensional (3D) porous organic frameworks (PdPPOPHBTT) was rationally designed and fabricated for the first time to realize ideal simultaneous detection and eradication of bacteria. PdPPOPHBTT covalently integrated palladium 5,10,15,20-tetrakis-(4'-bromophenyl) porphyrin (PdTBrPP, an excellent photosensitizer) with 2,3,6,7,12,13-hexabromotriptycene (HBTT, a 3D building module). The resulting material had outstanding NIR absorption, narrow bad gap and robust singlet oxygen (1O2) production capacity, which is responsible for the sensitive detection and effective removal of bacteria. We successfully realized the colorimetric detection of S. aureus and the efficient removal of S. aureus and E. coli. The first-principles calculations found at the highly activated 1O2 derived from the 3D conjugated periodic structures and ample palladium adsorption site in PdPPOPHBTT. The bacterial infection wound model revealed that PdPPOPHBTT possesses good disinfection ability and negligible side effect to normal tissue in vivo. This finding provides an innovative strategy for designing individual porous organic polymer (POPs) with multi-function and also broaden the applications of POPs as powerful nonantibiotic type of antimicrobials.
科研通智能强力驱动
Strongly Powered by AbleSci AI