YOLO-CCA: A Context-Based Approach for Traffic Sign Detection

背景(考古学) 计算机科学 符号(数学) 交通标志 人工智能 地理 数学 考古 数学分析
作者
Linfeng Jiang,Peidong Zhan,Ting Bai,Haoyong Yu
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2412.04289
摘要

Traffic sign detection is crucial for improving road safety and advancing autonomous driving technologies. Due to the complexity of driving environments, traffic sign detection frequently encounters a range of challenges, including low resolution, limited feature information, and small object sizes. These challenges significantly hinder the effective extraction of features from traffic signs, resulting in false positives and false negatives in object detection. To address these challenges, it is essential to explore more efficient and accurate approaches for traffic sign detection. This paper proposes a context-based algorithm for traffic sign detection, which utilizes YOLOv7 as the baseline model. Firstly, we propose an adaptive local context feature enhancement (LCFE) module using multi-scale dilation convolution to capture potential relationships between the object and surrounding areas. This module supplements the network with additional local context information. Secondly, we propose a global context feature collection (GCFC) module to extract key location features from the entire image scene as global context information. Finally, we build a Transformer-based context collection augmentation (CCA) module to process the collected local context and global context, which achieves superior multi-level feature fusion results for YOLOv7 without bringing in additional complexity. Extensive experimental studies performed on the Tsinghua-Tencent 100K dataset show that the mAP of our method is 92.1\%. Compared with YOLOv7, our approach improves 3.9\% in mAP, while the amount of parameters is reduced by 2.7M. On the CCTSDB2021 dataset the mAP is improved by 0.9\%. These results show that our approach achieves higher detection accuracy with fewer parameters. The source code is available at \url{https://github.com/zippiest/yolo-cca}.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zho发布了新的文献求助10
1秒前
生动斓发布了新的文献求助10
1秒前
科研通AI5应助科研通管家采纳,获得30
1秒前
wanci应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得20
1秒前
1秒前
852应助科研通管家采纳,获得10
1秒前
1秒前
充电宝应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得50
2秒前
Metrix应助科研通管家采纳,获得10
2秒前
Serendipity应助科研通管家采纳,获得20
2秒前
SYLH应助科研通管家采纳,获得10
2秒前
hero应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
goodnight应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
jiangmj1990发布了新的文献求助10
4秒前
wu61发布了新的文献求助10
4秒前
5秒前
1234发布了新的文献求助10
5秒前
回响完成签到 ,获得积分10
5秒前
本喵不怂发布了新的文献求助10
5秒前
andy完成签到,获得积分10
6秒前
6秒前
6秒前
zzz发布了新的文献求助10
8秒前
李爱国应助yinghan1212采纳,获得10
9秒前
Zn应助含蓄可乐采纳,获得30
9秒前
何劲松完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3522770
求助须知:如何正确求助?哪些是违规求助? 3103775
关于积分的说明 9267140
捐赠科研通 2800323
什么是DOI,文献DOI怎么找? 1536921
邀请新用户注册赠送积分活动 715217
科研通“疑难数据库(出版商)”最低求助积分说明 708692