亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Diagnostic Value of Radiomics Based on Various Diffusion Models in Magnetic Resonance Imaging for Prostate Cancer Risk Stratification

医学 接收机工作特性 前列腺癌 逻辑回归 单变量 磁共振成像 多元统计 核医学 前列腺 多元分析 放射科 癌症 内科学 机器学习 计算机科学
作者
Hongkai Yang,Xuan Qi,Wuling Wang,Bing Du,Wei Xue,Shaofeng Duan,Yongsheng He,Qiong Chen
出处
期刊:Current Medical Imaging Reviews [Bentham Science]
卷期号:20
标识
DOI:10.2174/0115734056341995240906070046
摘要

Introduction: The use of Magnetic Resonance Imaging (MRI) and radiomics improves the management of Prostate Cancer (PCa) and helps in differentiating between clinically insignificant and significant PCa. This study has explored the diagnostic value of radiomic analysis based on functional parameter maps from monoexponential and diffusion kurtosis models in MRI for differentiating between clinically insignificant and significant PCa. Methods: In total, 105 PCa cases, including 38 clinically insignificant and 67 clinically significant PCa cases, were retrospectively analyzed. The patients were randomly divided into training and testing sets in a ratio of 7:3. Univariate and multivariate logistic regression analyses were performed, and 1,352 radiomic features were extracted from ADC, MD, and MK images. Clinical, radiomic, and clinical–radiomic models were developed and compared using receiver operating characteristic curve analysis, decision curve analysis, and calibration curves. Results: Clinical variables, such as TPSA, PI-RADS, and FPSA, were identified as independent risk factors for differentiating between clinically insignificant and significant PCa. In radiomics, three features were identified as highly weighted indicators. The clinical–radiomic model based on the clinical and radiomic features demonstrated the highest predictive efficacy for clinically insignificant and significant PCa, with area under the curve values of 0.940 and 0.861 in the training and test sets, respectively. Conclusion: The predictive model constructed from clinical and radiomic features exhibited substantial diagnostic differentiation capabilities for clinically insignificant and significant PCa. The clinical–radiomic model displayed the highest predictive performance, promising significant contributions to future clinical treatment and assessment of PCa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
沿途有你完成签到 ,获得积分10
30秒前
wangwei完成签到 ,获得积分10
1分钟前
Excalibur应助八二力采纳,获得10
1分钟前
yoyo发布了新的文献求助20
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
竹夕完成签到 ,获得积分10
1分钟前
矢思然完成签到,获得积分10
1分钟前
玛琳卡迪马完成签到,获得积分10
1分钟前
嗯哼应助yoyo采纳,获得20
2分钟前
科目三应助zxcvb666采纳,获得10
2分钟前
科研通AI2S应助zxcvb666采纳,获得80
2分钟前
3分钟前
blm发布了新的文献求助10
3分钟前
小二郎应助blm采纳,获得10
3分钟前
无花果应助三点水采纳,获得10
4分钟前
5分钟前
三点水发布了新的文献求助10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
善学以致用应助三点水采纳,获得10
5分钟前
5分钟前
百里幻竹发布了新的文献求助10
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
sniffgo完成签到 ,获得积分10
7分钟前
LioXH发布了新的文献求助10
8分钟前
LioXH完成签到 ,获得积分10
9分钟前
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
chiyudoubao完成签到,获得积分10
9分钟前
10分钟前
11分钟前
情怀应助五香采纳,获得10
11分钟前
五香完成签到,获得积分10
11分钟前
11分钟前
五香发布了新的文献求助10
12分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460124
求助须知:如何正确求助?哪些是违规求助? 3054392
关于积分的说明 9041963
捐赠科研通 2743768
什么是DOI,文献DOI怎么找? 1505225
科研通“疑难数据库(出版商)”最低求助积分说明 695610
邀请新用户注册赠送积分活动 694867