反推
控制理论(社会学)
微分器
非线性系统
控制器(灌溉)
人工神经网络
计算机科学
跟踪误差
有界函数
李雅普诺夫函数
自适应控制
跟踪(教育)
控制(管理)
数学
人工智能
滤波器(信号处理)
生物
数学分析
物理
教育学
农学
量子力学
心理学
计算机视觉
作者
Huanqing Wang,Miao Tong,Xudong Zhao,Ben Niu,Man Yang
标识
DOI:10.1109/tcyb.2022.3204275
摘要
This article investigates the neural-network-based adaptive predefined-time tracking control problem for switched nonlinear systems. Neural networks are employed to approximate the unknown part of nonlinear functions. The finite-time differentiators are introduced to estimate the first derivative of the virtual controllers. Then, a novel adaptive predefined-time controller is proposed by utilizing the backstepping control technique and the common Lyapunov function (CLF) method. It is explained by the theoretical analysis that the developed controller guarantees that all signals of the switched closed-loop systems are bounded under arbitrary switchings and the tracking error converges to zero within the predefined time. A simulation is shown to verify the validity of the developed predefined-time control approach.
科研通智能强力驱动
Strongly Powered by AbleSci AI