Research on Predicting Welding Deformation in Automated Laser Welding Processes with an Enhanced DEWOA-BP Algorithm

焊接 变形(气象学) 算法 材料科学 人工智能 计算机科学 机械工程 工程类 复合材料
作者
Xuejian Zhang,Xiao‐Bing Hu,Hang Li,Zheyuan Zhang,Haijun Chen,Hong Sun
出处
期刊:Machines [MDPI AG]
卷期号:12 (5): 307-307 被引量:2
标识
DOI:10.3390/machines12050307
摘要

Welding stands as a critical focus for the intelligent and digital transformation of the machinery industry, with automated laser welding playing a pivotal role in the sector’s technological advancement. The management of welding deformation in such operations is fundamental, relying on advanced analysis and prediction methods. The endeavor to accurately analyze welding deformation in practical applications is compounded by the interplay of numerous variables, a pronounced coupling effect among these factors, and a reliance on expert intuition. Thus, effective deformation control in automated laser welding operations necessitates the gathering of pre-test laser welding data to develop a predictive approach that accurately reflects real-world conditions and is characterized by improved reliability and stability. To address the technological evolution in automated laser welding, a predictive model based on neural network technology is proposed to map the intricate relationship between process variables and the resulting deformation. At the heart of this approach is the formulation of a predictive model utilizing a back-propagation neural network (BP), with an emphasis on four essential welding parameters: speed, peak power, duty cycle, and defocusing amount. The model’s predictive accuracy is then honed through the application of the whale optimization algorithm (WOA) and the differential evolutionary (DE) algorithm. Finally, extensive testing in an automated laser welding experimental setup is conducted to validate the accuracy and reliability of the proposed prediction model. It is demonstrated through these experiments that the deformation prediction model, enhanced by the DEWOA-BP neural network, accurately forecasts the relationship between laser welding parameters and the induced deformation, maintaining a prediction error margin of ±0.1mm. The model is employed to fulfill the requirements for a pre-welding quality evaluation, thereby facilitating a more calculated and informed approach to welding operations. This method of intelligent prediction is not only crucial for the intelligent transformation of laser welding but also holds significant implications for traditional machining technologies such as milling, grinding, and spraying. It offers innovative ideas and methods that are pivotal for the industrial revolution and technological advancement of the traditional machining industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
赵胜男完成签到 ,获得积分10
1秒前
2秒前
共享精神应助坚强的樱采纳,获得10
2秒前
3秒前
千陽完成签到,获得积分10
3秒前
bluesiryao完成签到,获得积分10
3秒前
Miracle完成签到,获得积分10
3秒前
托丽莲睡拿完成签到,获得积分10
3秒前
3秒前
3秒前
DAYTOY发布了新的文献求助50
4秒前
杀出个黎明举报求助违规成功
4秒前
whatever举报求助违规成功
4秒前
iNk举报求助违规成功
4秒前
4秒前
linxue完成签到,获得积分10
4秒前
蛋蛋1完成签到,获得积分10
5秒前
5秒前
6秒前
ss发布了新的文献求助10
6秒前
SHJ完成签到,获得积分20
6秒前
海棠听风发布了新的文献求助10
7秒前
23发布了新的文献求助10
7秒前
xde145完成签到,获得积分10
7秒前
8秒前
shime完成签到,获得积分10
8秒前
费城青年发布了新的文献求助10
8秒前
8秒前
9秒前
SHDeathlock给SHDeathlock的求助进行了留言
10秒前
10秒前
10秒前
马静雨发布了新的文献求助50
11秒前
拼搏起眸发布了新的文献求助10
12秒前
二二二发布了新的文献求助10
12秒前
科目三应助柴火烧叽采纳,获得10
12秒前
啊实打实的卡完成签到,获得积分10
12秒前
orixero应助大智若愚啊采纳,获得10
12秒前
Z.完成签到 ,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794