Research on Predicting Welding Deformation in Automated Laser Welding Processes with an Enhanced DEWOA-BP Algorithm

焊接 变形(气象学) 算法 材料科学 人工智能 计算机科学 机械工程 工程类 复合材料
作者
Xuejian Zhang,Xiao‐Bing Hu,Hang Li,Zheyuan Zhang,Haijun Chen,Hong Sun
出处
期刊:Machines [Multidisciplinary Digital Publishing Institute]
卷期号:12 (5): 307-307 被引量:2
标识
DOI:10.3390/machines12050307
摘要

Welding stands as a critical focus for the intelligent and digital transformation of the machinery industry, with automated laser welding playing a pivotal role in the sector’s technological advancement. The management of welding deformation in such operations is fundamental, relying on advanced analysis and prediction methods. The endeavor to accurately analyze welding deformation in practical applications is compounded by the interplay of numerous variables, a pronounced coupling effect among these factors, and a reliance on expert intuition. Thus, effective deformation control in automated laser welding operations necessitates the gathering of pre-test laser welding data to develop a predictive approach that accurately reflects real-world conditions and is characterized by improved reliability and stability. To address the technological evolution in automated laser welding, a predictive model based on neural network technology is proposed to map the intricate relationship between process variables and the resulting deformation. At the heart of this approach is the formulation of a predictive model utilizing a back-propagation neural network (BP), with an emphasis on four essential welding parameters: speed, peak power, duty cycle, and defocusing amount. The model’s predictive accuracy is then honed through the application of the whale optimization algorithm (WOA) and the differential evolutionary (DE) algorithm. Finally, extensive testing in an automated laser welding experimental setup is conducted to validate the accuracy and reliability of the proposed prediction model. It is demonstrated through these experiments that the deformation prediction model, enhanced by the DEWOA-BP neural network, accurately forecasts the relationship between laser welding parameters and the induced deformation, maintaining a prediction error margin of ±0.1mm. The model is employed to fulfill the requirements for a pre-welding quality evaluation, thereby facilitating a more calculated and informed approach to welding operations. This method of intelligent prediction is not only crucial for the intelligent transformation of laser welding but also holds significant implications for traditional machining technologies such as milling, grinding, and spraying. It offers innovative ideas and methods that are pivotal for the industrial revolution and technological advancement of the traditional machining industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幽默的棒球完成签到,获得积分10
刚刚
ChatGPT发布了新的文献求助10
刚刚
小二郎应助mimosa采纳,获得10
1秒前
SciGPT应助爱吃馄饨的饺子采纳,获得10
1秒前
2秒前
2秒前
Meya发布了新的文献求助10
2秒前
4秒前
ding应助端庄洪纲采纳,获得10
4秒前
所所应助啦啦啦~采纳,获得10
4秒前
小肥吴发布了新的文献求助20
4秒前
淡然黑猫完成签到,获得积分10
4秒前
4秒前
乐乐应助宁戎采纳,获得10
4秒前
5秒前
6秒前
7秒前
chen发布了新的文献求助10
7秒前
garden发布了新的文献求助20
7秒前
科研小能手完成签到,获得积分10
8秒前
陈小二发布了新的文献求助10
8秒前
脑洞疼应助早安采纳,获得10
8秒前
8秒前
8秒前
SciGPT应助aiyoualxb采纳,获得10
9秒前
刘欣宇完成签到,获得积分10
10秒前
长风完成签到,获得积分10
11秒前
IFevan发布了新的文献求助10
11秒前
嘻嘻发布了新的文献求助10
11秒前
12秒前
细腻的从波完成签到,获得积分10
12秒前
沉默的红牛完成签到 ,获得积分10
13秒前
自由文博完成签到 ,获得积分10
13秒前
小肥吴完成签到,获得积分10
14秒前
14秒前
14秒前
司徒无剑发布了新的文献求助10
14秒前
15秒前
田又又完成签到,获得积分10
15秒前
Warren完成签到,获得积分20
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951271
求助须知:如何正确求助?哪些是违规求助? 3496677
关于积分的说明 11083785
捐赠科研通 3227103
什么是DOI,文献DOI怎么找? 1784263
邀请新用户注册赠送积分活动 868293
科研通“疑难数据库(出版商)”最低求助积分说明 801102