Research on Predicting Welding Deformation in Automated Laser Welding Processes with an Enhanced DEWOA-BP Algorithm

焊接 变形(气象学) 算法 材料科学 人工智能 计算机科学 机械工程 工程类 复合材料
作者
Xuejian Zhang,Xiao‐Bing Hu,Hang Li,Zheyuan Zhang,Haijun Chen,Hong Sun
出处
期刊:Machines [MDPI AG]
卷期号:12 (5): 307-307 被引量:2
标识
DOI:10.3390/machines12050307
摘要

Welding stands as a critical focus for the intelligent and digital transformation of the machinery industry, with automated laser welding playing a pivotal role in the sector’s technological advancement. The management of welding deformation in such operations is fundamental, relying on advanced analysis and prediction methods. The endeavor to accurately analyze welding deformation in practical applications is compounded by the interplay of numerous variables, a pronounced coupling effect among these factors, and a reliance on expert intuition. Thus, effective deformation control in automated laser welding operations necessitates the gathering of pre-test laser welding data to develop a predictive approach that accurately reflects real-world conditions and is characterized by improved reliability and stability. To address the technological evolution in automated laser welding, a predictive model based on neural network technology is proposed to map the intricate relationship between process variables and the resulting deformation. At the heart of this approach is the formulation of a predictive model utilizing a back-propagation neural network (BP), with an emphasis on four essential welding parameters: speed, peak power, duty cycle, and defocusing amount. The model’s predictive accuracy is then honed through the application of the whale optimization algorithm (WOA) and the differential evolutionary (DE) algorithm. Finally, extensive testing in an automated laser welding experimental setup is conducted to validate the accuracy and reliability of the proposed prediction model. It is demonstrated through these experiments that the deformation prediction model, enhanced by the DEWOA-BP neural network, accurately forecasts the relationship between laser welding parameters and the induced deformation, maintaining a prediction error margin of ±0.1mm. The model is employed to fulfill the requirements for a pre-welding quality evaluation, thereby facilitating a more calculated and informed approach to welding operations. This method of intelligent prediction is not only crucial for the intelligent transformation of laser welding but also holds significant implications for traditional machining technologies such as milling, grinding, and spraying. It offers innovative ideas and methods that are pivotal for the industrial revolution and technological advancement of the traditional machining industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Miiiii完成签到,获得积分20
刚刚
Druvis发布了新的文献求助10
刚刚
光亮的逍遥完成签到,获得积分10
刚刚
猫咪老师应助呜啦啦啦采纳,获得30
2秒前
任乘风发布了新的文献求助10
2秒前
wanci应助眯眯眼的篮球采纳,获得10
3秒前
4秒前
5秒前
10秒前
眯眯眼的篮球完成签到,获得积分10
11秒前
12秒前
涛哥发布了新的文献求助10
12秒前
任乘风完成签到,获得积分10
14秒前
英俊的铭应助故意的怀曼采纳,获得10
14秒前
16秒前
17秒前
17秒前
19秒前
研友_nvGY4Z完成签到,获得积分20
20秒前
20秒前
lv完成签到,获得积分10
21秒前
喜悦的飞飞完成签到,获得积分10
22秒前
23秒前
lv发布了新的文献求助10
23秒前
韩大夫爱吃鱼完成签到,获得积分10
25秒前
张晓蕾应助asd采纳,获得10
26秒前
27秒前
33秒前
DG完成签到,获得积分10
34秒前
35秒前
木mao完成签到,获得积分10
35秒前
尐菟菟发布了新的文献求助10
37秒前
充电宝应助南宫书瑶采纳,获得10
39秒前
40秒前
ChandlerZB完成签到,获得积分10
40秒前
刘璇2完成签到,获得积分10
41秒前
啦啦啦发布了新的文献求助10
43秒前
bkagyin应助txh12323采纳,获得30
46秒前
47秒前
yiqifan完成签到,获得积分0
47秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222497
求助须知:如何正确求助?哪些是违规求助? 2871136
关于积分的说明 8174143
捐赠科研通 2538111
什么是DOI,文献DOI怎么找? 1370336
科研通“疑难数据库(出版商)”最低求助积分说明 645783
邀请新用户注册赠送积分活动 619564