膜
能量收集
表面电荷
生物物理学
纳米技术
流动电流
土壤孔隙空间特征
曲面(拓扑)
渗透
空格(标点符号)
化学
表面能
材料科学
能量(信号处理)
化学工程
物理
工程类
复合材料
生物
生物化学
计算机科学
多孔性
数学
几何学
物理化学
量子力学
操作系统
作者
Tianliang Xiao,Xuejiang Li,Wenwei Lei,Bingxin Lu,Zhaoyue Liu,Jin Zhai
标识
DOI:10.1016/j.jcis.2024.06.094
摘要
As promising prospects for renewable power harvesting, two-dimensional (2D) nanochannels for osmotic energy capture in a reverse electrodialysis arrangement have garnered significant attention. However, existing 2D nanochannel membranes have shown limited power generation capabilities due to challenges in balancing ion flux and selectivity. Here, we construct montmorillonite (MMT)/TEMPO-mediated oxidation cellulose nanofibers (TOCNFs) nanocomposite membranes for enhanced ion transmembrane transport. The intercalation of TOCNFs not only enlarges the interlayer distance, but also provides abundant space charge inside the nanochannels. Benefiting from the strong ion selectivity and high ion flux, the composite membrane achieves a remarkable power output of ∼16.57 W/m2 in the gradient of artificial seawater and river water, exceeding that of the state-of-the-art heterogeneous membrane-based osmotic energy conversion systems. Both experimental and theoretical findings confirm that the synergism of space and surface charge plays a crucial role in promoting osmotic energy conversion. This research contributes valuable insights into the optimization of 2D membranes for efficient clean energy harvesting purposes.
科研通智能强力驱动
Strongly Powered by AbleSci AI