Statistical modeling of acute and chronic pain patient-reported outcomes obtained from ecological momentary assessment

慢性疼痛 生态学 医学 物理疗法 生物
作者
Andrew Leroux,Ciprian M. Crainiceanu,Scott L. Zeger,Margaret A. Taub,Briha Ansari,Tor D. Wager,Emine O. Bayman,Christopher S. Coffey,Carl D. Langefeld,Robert J. McCarthy,Alexander Tsodikov,Chad Brummet,Daniel J. Clauw,Robert R. Edwards,Martin A. Lindquist
出处
期刊:Pain [Lippincott Williams & Wilkins]
卷期号:165 (9): 1955-1965 被引量:3
标识
DOI:10.1097/j.pain.0000000000003214
摘要

Abstract Ecological momentary assessment (EMA) allows for the collection of participant-reported outcomes (PROs), including pain, in the normal environment at high resolution and with reduced recall bias. Ecological momentary assessment is an important component in studies of pain, providing detailed information about the frequency, intensity, and degree of interference of individuals' pain. However, there is no universally agreed on standard for summarizing pain measures from repeated PRO assessment using EMA into a single, clinically meaningful measure of pain. Here, we quantify the accuracy of summaries (eg, mean and median) of pain outcomes obtained from EMA and the effect of thresholding these summaries to obtain binary clinical end points of chronic pain status (yes/no). Data applications and simulations indicate that binarizing empirical estimators (eg, sample mean, random intercept linear mixed model) can perform well. However, linear mixed-effect modeling estimators that account for the nonlinear relationship between average and variability of pain scores perform better for quantifying the true average pain and reduce estimation error by up to 50%, with larger improvements for individuals with more variable pain scores. We also show that binarizing pain scores (eg, <3 and ≥3) can lead to a substantial loss of statistical power (40%-50%). Thus, when examining pain outcomes using EMA, the use of linear mixed models using the entire scale (0-10) is superior to splitting the outcomes into 2 groups (<3 and ≥3) providing greater statistical power and sensitivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
眼睛大的小蚂蚁完成签到 ,获得积分10
刚刚
西陆完成签到,获得积分10
1秒前
3秒前
Leo完成签到,获得积分10
5秒前
cooyuan发布了新的文献求助10
7秒前
aaadddhhh发布了新的文献求助10
9秒前
纯真的怜蕾完成签到,获得积分10
9秒前
念念妈咪完成签到 ,获得积分10
10秒前
隐形曼青应助扒开皮皮采纳,获得10
10秒前
墨墨完成签到,获得积分10
12秒前
安详的琳完成签到,获得积分10
16秒前
genesquared完成签到,获得积分10
16秒前
迷了路的猫完成签到,获得积分10
16秒前
17秒前
ding应助cooyuan采纳,获得10
19秒前
19秒前
20秒前
20秒前
李冰浩发布了新的文献求助10
21秒前
君君发布了新的文献求助30
22秒前
Jenny发布了新的文献求助10
24秒前
25秒前
陌语完成签到,获得积分10
26秒前
26秒前
26秒前
27秒前
淡定傲儿发布了新的文献求助10
28秒前
28秒前
28秒前
30秒前
30秒前
31秒前
科研通AI2S应助朱由校采纳,获得10
32秒前
hfdfffcc发布了新的文献求助10
33秒前
zouzou完成签到,获得积分10
33秒前
12发布了新的文献求助10
34秒前
35秒前
扒开皮皮发布了新的文献求助10
37秒前
shuzi发布了新的文献求助10
38秒前
领导范儿应助满意悒采纳,获得10
40秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741468
求助须知:如何正确求助?哪些是违规求助? 3284100
关于积分的说明 10038512
捐赠科研通 3000962
什么是DOI,文献DOI怎么找? 1646907
邀请新用户注册赠送积分活动 783919
科研通“疑难数据库(出版商)”最低求助积分说明 750478