In order to investigate the effect of glucono-δ-lactone (GDL) and different salt ions (Na+ and Ca2+) induction on the cold-set gels of bovine serum albumin (BSA)-arabinoxylan (AX), the gel properties and structure of BSA-AX cold-set gels were evaluated by analyzing the gel strength, water-holding capacity, thermal properties, and Fourier Transform Infrared (FTIR) spectra. It was shown that the best gel strength (109.15 g) was obtained when the ratio of BSA to AX was 15:1. The addition of 1 % GDL significantly improved the water-holding capacity, gel strength and thermal stability of the cold-set gels (p < 0.05), and the microstructure was smoother. Low concentrations of Na+ (3 mM) and Ca2+ (6 mM) significantly enhanced the hydrophobic interaction and hydrogen bonding between BSA and AX after acid induction, and the Na+-induced formation of a denser microstructure with a higher water-holding capacity (75.51 %). However, the excess salt ions disrupted the stable network structure of the cold-set gels and reduced their thermal stability and crystalline structure. The results of this study contribute to the understanding of the interactions between BSA and AX induced by GDL and salt ions, and provide a basis for designing hydrogels with different properties.