Are ChatGPT and large language models “the answer” to bringing us closer to systematic review automation?

审查 医学 系统回顾 工程伦理学 数据科学 梅德林 计算机科学 计算机安全 政治学 法学 工程类
作者
Riaz Qureshı,Daniel T. Shaughnessy,Kayden A R Gill,Karen A. Robinson,Tianjing Li,Eitan Agai
出处
期刊:Systematic Reviews [Springer Nature]
卷期号:12 (1) 被引量:45
标识
DOI:10.1186/s13643-023-02243-z
摘要

In this commentary, we discuss ChatGPT and our perspectives on its utility to systematic reviews (SRs) through the appropriateness and applicability of its responses to SR related prompts. The advancement of artificial intelligence (AI)-assisted technologies leave many wondering about the current capabilities, limitations, and opportunities for integration AI into scientific endeavors. Large language models (LLM)-such as ChatGPT, designed by OpenAI-have recently gained widespread attention with their ability to respond to various prompts in a natural-sounding way. Systematic reviews (SRs) utilize secondary data and often require many months and substantial financial resources to complete, making them attractive grounds for developing AI-assistive technologies. On February 6, 2023, PICO Portal developers hosted a webinar to explore ChatGPT's responses to tasks related to SR methodology. Our experience from exploring the responses of ChatGPT suggest that while ChatGPT and LLMs show some promise for aiding in SR-related tasks, the technology is in its infancy and needs much development for such applications. Furthermore, we advise that great caution should be taken by non-content experts in using these tools due to much of the output appearing, at a high level, to be valid, while much is erroneous and in need of active vetting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张伟完成签到,获得积分10
1秒前
1秒前
2秒前
烟花应助MOMOMOMO采纳,获得30
2秒前
晒月光完成签到,获得积分10
2秒前
2秒前
3秒前
CipherSage应助了了采纳,获得10
3秒前
淡定的二娘关注了科研通微信公众号
3秒前
张伟发布了新的文献求助10
3秒前
关关完成签到 ,获得积分20
5秒前
小幺不甜发布了新的文献求助10
7秒前
7秒前
xixi发布了新的文献求助10
9秒前
丘比特应助诚心的凉面采纳,获得10
10秒前
11秒前
笨笨chen发布了新的文献求助10
12秒前
13秒前
LOOW完成签到,获得积分10
13秒前
一束澳梅发布了新的文献求助200
13秒前
谨慎凡桃发布了新的文献求助10
14秒前
千百度完成签到,获得积分10
15秒前
Archie完成签到,获得积分10
17秒前
领导范儿应助momo采纳,获得10
17秒前
18秒前
美满果汁发布了新的文献求助10
19秒前
传奇3应助嘎嘎楽采纳,获得10
21秒前
23秒前
炎燚发布了新的文献求助10
23秒前
今后应助动听元彤采纳,获得10
24秒前
王九八发布了新的文献求助10
25秒前
正直的怀亦完成签到,获得积分20
29秒前
29秒前
30秒前
Dr.zhou发布了新的文献求助10
32秒前
34秒前
eee发布了新的文献求助10
35秒前
35秒前
zhangqi完成签到,获得积分20
35秒前
慕青应助Felix采纳,获得10
36秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Data Structures and Algorithms in Java 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267979
求助须知:如何正确求助?哪些是违规求助? 2907389
关于积分的说明 8341771
捐赠科研通 2577998
什么是DOI,文献DOI怎么找? 1401517
科研通“疑难数据库(出版商)”最低求助积分说明 655050
邀请新用户注册赠送积分活动 634127