RNA依赖性RNA聚合酶
核糖核酸
RNA聚合酶
聚合酶
生物
生物信息学
核苷
核苷酸
酶
生物化学
计算生物学
化学
病毒学
基因
作者
Angela Parise,Giada Ciardullo,Mario Prejanò,Aurélien de la Lande,Tiziana Marino
标识
DOI:10.1021/acs.jcim.2c01002
摘要
The novel coronavirus SARS-CoV-2 is the causative agent of the COVID-19 outbreak that is affecting the entire planet. As the pandemic is still spreading worldwide, with multiple mutations of the virus, it is of interest and of help to employ computational methods for identifying potential inhibitors of the enzymes responsible for viral replication. Attractive antiviral nucleotide analogue RNA-dependent RNA polymerase (RdRp) chain terminator inhibitors are investigated with this purpose. This study, based on molecular dynamics (MD) simulations, addresses the important aspects of the incorporation of an endogenously synthesized nucleoside triphosphate, ddhCTP, in comparison with the natural nucleobase cytidine triphosphate (CTP) in RdRp. The ddhCTP species is the product of the viperin antiviral protein as part of the innate immune response. The absence of the ribose 3′-OH in ddhCTP could have important implications in its inhibitory mechanism of RdRp. We built an in silico model of the RNA strand embedded in RdRp using experimental methods, starting from the cryo-electron microscopy structure and exploiting the information obtained by spectrometry on the RNA sequence. We determined that the model was stable during the MD simulation time. The obtained results provide deeper insights into the incorporation of nucleoside triphosphates, whose molecular mechanism by the RdRp active site still remains elusive.
科研通智能强力驱动
Strongly Powered by AbleSci AI