Attack Detection in IoT-Based Healthcare Networks Using Hybrid Federated Learning

计算机科学 异常检测 机器学习 服务器 人工智能 联合学习 保密 物联网 计算机安全 数据挖掘 计算机网络
作者
May Itani,Hanaa Basheer,Fouad Eddine
标识
DOI:10.1109/smartnets58706.2023.10216144
摘要

Cybercrimes are increasing rapidly throughout the world, leading to financial losses and compromising the integrity and confidentiality of private data. Statistics showed that cybercrimes led to losses of around $6 trillion in 2021 based on a survey by Cybersecurity Ventures. Knowing that IoT networks are considered a source of identifiable data for vicious attackers to carry out criminal actions using automated processes, machine learning (ML)-assisted methods for IoT security have gained much attention in recent years. While conventional ML relies on a single server to store all of its data, which makes it a less desirable option for domains concerned about user privacy, the Federated Learning (FL)-based anomaly detection technique, which utilizes decentralized on-device data to identify IoT network intrusions, represents the proposed solution to the aforementioned problem. We propose a framework to train and test IoT data from health network using different classical machine learning algorithms and an enhanced federated learning model. FL is a framework that learns continuously in an iterative manner by training locally at the client side with the clientś individual data, and then updating the central server by forwarding the required data. We evaluated the performance of different algorithms based on accuracy, precision, recall and F1-score via different iterations. To develop a strong detection system, we used multiple datasets and generated different results. These results show decent and promising accuracy hence a promising solution towards telehealth application using machine learning techniques in detecting threats on IoT networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助jh采纳,获得10
刚刚
刚刚
1秒前
1秒前
hyperle完成签到,获得积分10
1秒前
深情安青应助漫漫采纳,获得10
1秒前
大模型应助栀初采纳,获得10
1秒前
hhhm完成签到 ,获得积分10
1秒前
打打应助老实的雁卉采纳,获得30
1秒前
2秒前
赘婿应助彩虹捕手采纳,获得10
2秒前
Big_wayne完成签到,获得积分10
2秒前
2秒前
叮当喵完成签到,获得积分10
3秒前
苏苏完成签到,获得积分10
3秒前
4秒前
Rufina0720发布了新的文献求助10
4秒前
年轻小之发布了新的文献求助10
4秒前
热情十三完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
天天哥哥完成签到 ,获得积分10
5秒前
舒克发布了新的文献求助10
5秒前
笑点低的代容完成签到,获得积分10
5秒前
6秒前
Jasper应助满意夏旋采纳,获得10
6秒前
winwin完成签到,获得积分10
7秒前
wzy发布了新的文献求助10
7秒前
kk发布了新的文献求助10
7秒前
7秒前
鲤鱼完成签到,获得积分10
7秒前
nini完成签到,获得积分10
7秒前
传奇3应助稳重的谷南采纳,获得10
7秒前
LM发布了新的文献求助10
7秒前
科研通AI6应助花椒采纳,获得10
7秒前
8秒前
Shine完成签到 ,获得积分10
8秒前
影子发布了新的文献求助10
8秒前
领导范儿应助路纹婷采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526338
求助须知:如何正确求助?哪些是违规求助? 4616396
关于积分的说明 14553657
捐赠科研通 4554678
什么是DOI,文献DOI怎么找? 2496015
邀请新用户注册赠送积分活动 1476342
关于科研通互助平台的介绍 1447998