Attack Detection in IoT-Based Healthcare Networks Using Hybrid Federated Learning

计算机科学 异常检测 机器学习 服务器 人工智能 联合学习 保密 物联网 计算机安全 数据挖掘 计算机网络
作者
May Itani,Hanaa Basheer,Fouad Eddine
标识
DOI:10.1109/smartnets58706.2023.10216144
摘要

Cybercrimes are increasing rapidly throughout the world, leading to financial losses and compromising the integrity and confidentiality of private data. Statistics showed that cybercrimes led to losses of around $6 trillion in 2021 based on a survey by Cybersecurity Ventures. Knowing that IoT networks are considered a source of identifiable data for vicious attackers to carry out criminal actions using automated processes, machine learning (ML)-assisted methods for IoT security have gained much attention in recent years. While conventional ML relies on a single server to store all of its data, which makes it a less desirable option for domains concerned about user privacy, the Federated Learning (FL)-based anomaly detection technique, which utilizes decentralized on-device data to identify IoT network intrusions, represents the proposed solution to the aforementioned problem. We propose a framework to train and test IoT data from health network using different classical machine learning algorithms and an enhanced federated learning model. FL is a framework that learns continuously in an iterative manner by training locally at the client side with the clientś individual data, and then updating the central server by forwarding the required data. We evaluated the performance of different algorithms based on accuracy, precision, recall and F1-score via different iterations. To develop a strong detection system, we used multiple datasets and generated different results. These results show decent and promising accuracy hence a promising solution towards telehealth application using machine learning techniques in detecting threats on IoT networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
罗尧完成签到,获得积分10
刚刚
Ava应助NGU采纳,获得10
刚刚
刚刚
刚刚
19991027完成签到 ,获得积分10
1秒前
1秒前
行路难发布了新的文献求助30
1秒前
科研通AI6应助谨慎建辉采纳,获得10
2秒前
XX发布了新的文献求助10
2秒前
3秒前
VESong发布了新的文献求助10
4秒前
fdu_sf发布了新的文献求助10
4秒前
4秒前
houlingwei发布了新的文献求助30
5秒前
pppyy完成签到,获得积分10
7秒前
KANY应助zero桥采纳,获得30
7秒前
科研通AI6应助zdesfsfa采纳,获得10
7秒前
小粥完成签到,获得积分20
7秒前
liu完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
丘比特应助车宇采纳,获得10
9秒前
小青椒应助KKK采纳,获得50
10秒前
鑫博完成签到 ,获得积分10
10秒前
Ava应助想要有直升机采纳,获得10
11秒前
11秒前
懒羊羊发布了新的文献求助10
12秒前
张飞完成签到 ,获得积分10
13秒前
温柔柜子发布了新的文献求助10
15秒前
kook发布了新的文献求助10
16秒前
彭彭发布了新的文献求助10
16秒前
香蕉觅云应助peiyi采纳,获得10
16秒前
Akim应助fdu_sf采纳,获得10
18秒前
汉堡包应助fdu_sf采纳,获得10
18秒前
深情安青应助fdu_sf采纳,获得10
18秒前
今后应助fdu_sf采纳,获得10
18秒前
小羊羊完成签到,获得积分10
18秒前
科研通AI6应助张诗苑采纳,获得30
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288622
求助须知:如何正确求助?哪些是违规求助? 4440454
关于积分的说明 13824620
捐赠科研通 4322732
什么是DOI,文献DOI怎么找? 2372708
邀请新用户注册赠送积分活动 1368140
关于科研通互助平台的介绍 1332034