Attack Detection in IoT-Based Healthcare Networks Using Hybrid Federated Learning

计算机科学 异常检测 机器学习 服务器 人工智能 联合学习 保密 物联网 计算机安全 数据挖掘 计算机网络
作者
May Itani,Hanaa Basheer,Fouad Eddine
标识
DOI:10.1109/smartnets58706.2023.10216144
摘要

Cybercrimes are increasing rapidly throughout the world, leading to financial losses and compromising the integrity and confidentiality of private data. Statistics showed that cybercrimes led to losses of around $6 trillion in 2021 based on a survey by Cybersecurity Ventures. Knowing that IoT networks are considered a source of identifiable data for vicious attackers to carry out criminal actions using automated processes, machine learning (ML)-assisted methods for IoT security have gained much attention in recent years. While conventional ML relies on a single server to store all of its data, which makes it a less desirable option for domains concerned about user privacy, the Federated Learning (FL)-based anomaly detection technique, which utilizes decentralized on-device data to identify IoT network intrusions, represents the proposed solution to the aforementioned problem. We propose a framework to train and test IoT data from health network using different classical machine learning algorithms and an enhanced federated learning model. FL is a framework that learns continuously in an iterative manner by training locally at the client side with the clientś individual data, and then updating the central server by forwarding the required data. We evaluated the performance of different algorithms based on accuracy, precision, recall and F1-score via different iterations. To develop a strong detection system, we used multiple datasets and generated different results. These results show decent and promising accuracy hence a promising solution towards telehealth application using machine learning techniques in detecting threats on IoT networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shunguo完成签到,获得积分10
刚刚
闻元杰发布了新的文献求助10
1秒前
爆米花应助江一山采纳,获得10
1秒前
俭朴仇血发布了新的文献求助10
1秒前
科研热心人发布了新的文献求助200
2秒前
2秒前
科研汪发布了新的文献求助30
3秒前
wave完成签到,获得积分10
3秒前
lxl98发布了新的文献求助10
3秒前
4秒前
shunguo发布了新的文献求助10
4秒前
4秒前
香蕉觅云应助西番雅采纳,获得10
5秒前
muggle完成签到,获得积分10
7秒前
彭于彦祖应助潇洒的涵双采纳,获得30
7秒前
Lucas应助1717采纳,获得10
8秒前
nemo发布了新的文献求助10
8秒前
8秒前
123发布了新的文献求助30
9秒前
9秒前
9秒前
SciGPT应助Yue采纳,获得10
10秒前
Fossil@1017完成签到,获得积分10
10秒前
丘比特应助123采纳,获得10
11秒前
武雨珍发布了新的文献求助10
12秒前
辛子发布了新的文献求助20
12秒前
了0完成签到 ,获得积分10
13秒前
何琳完成签到 ,获得积分10
13秒前
wenyaq完成签到,获得积分10
13秒前
断棍豪斯完成签到,获得积分10
13秒前
123完成签到,获得积分10
14秒前
Owen应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
领导范儿应助科研通管家采纳,获得10
14秒前
天天快乐应助科研通管家采纳,获得10
14秒前
14秒前
华仔应助科研通管家采纳,获得10
14秒前
Lucas应助dm11采纳,获得10
14秒前
脑洞疼应助科研通管家采纳,获得10
14秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262369
求助须知:如何正确求助?哪些是违规求助? 2903039
关于积分的说明 8324003
捐赠科研通 2573087
什么是DOI,文献DOI怎么找? 1398041
科研通“疑难数据库(出版商)”最低求助积分说明 654001
邀请新用户注册赠送积分活动 632586