Attack Detection in IoT-Based Healthcare Networks Using Hybrid Federated Learning

计算机科学 异常检测 机器学习 服务器 人工智能 联合学习 保密 物联网 计算机安全 数据挖掘 计算机网络
作者
May Itani,Hanaa Basheer,Fouad Eddine
标识
DOI:10.1109/smartnets58706.2023.10216144
摘要

Cybercrimes are increasing rapidly throughout the world, leading to financial losses and compromising the integrity and confidentiality of private data. Statistics showed that cybercrimes led to losses of around $6 trillion in 2021 based on a survey by Cybersecurity Ventures. Knowing that IoT networks are considered a source of identifiable data for vicious attackers to carry out criminal actions using automated processes, machine learning (ML)-assisted methods for IoT security have gained much attention in recent years. While conventional ML relies on a single server to store all of its data, which makes it a less desirable option for domains concerned about user privacy, the Federated Learning (FL)-based anomaly detection technique, which utilizes decentralized on-device data to identify IoT network intrusions, represents the proposed solution to the aforementioned problem. We propose a framework to train and test IoT data from health network using different classical machine learning algorithms and an enhanced federated learning model. FL is a framework that learns continuously in an iterative manner by training locally at the client side with the clientś individual data, and then updating the central server by forwarding the required data. We evaluated the performance of different algorithms based on accuracy, precision, recall and F1-score via different iterations. To develop a strong detection system, we used multiple datasets and generated different results. These results show decent and promising accuracy hence a promising solution towards telehealth application using machine learning techniques in detecting threats on IoT networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xierwalasi完成签到,获得积分10
1秒前
1秒前
lll发布了新的文献求助10
1秒前
熬夜拜拜发布了新的文献求助20
1秒前
2秒前
hhhhuo完成签到,获得积分10
2秒前
2秒前
久日发布了新的文献求助10
2秒前
3秒前
3秒前
joe发布了新的文献求助10
3秒前
叫兽完成签到,获得积分10
4秒前
5秒前
可不乐发布了新的文献求助10
5秒前
5秒前
科目三应助衡阳雁采纳,获得10
5秒前
清爽莫言完成签到,获得积分10
5秒前
共享精神应助小危酱采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
Teanka应助张二狗采纳,获得30
5秒前
浮游应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
大龙哥886应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
送给可爱的人完成签到,获得积分20
6秒前
zjq发布了新的文献求助10
6秒前
大龙哥886应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得20
6秒前
浮游应助科研通管家采纳,获得10
6秒前
Kane发布了新的文献求助10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
6秒前
7秒前
张雅琪应助mmyhn采纳,获得10
7秒前
7秒前
韭黄发布了新的文献求助10
7秒前
科研丁完成签到,获得积分10
7秒前
顾矜应助嗯啊啊啊啊采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577090
求助须知:如何正确求助?哪些是违规求助? 4662349
关于积分的说明 14741219
捐赠科研通 4602974
什么是DOI,文献DOI怎么找? 2526066
邀请新用户注册赠送积分活动 1495974
关于科研通互助平台的介绍 1465478