Attack Detection in IoT-Based Healthcare Networks Using Hybrid Federated Learning

计算机科学 异常检测 机器学习 服务器 人工智能 联合学习 保密 物联网 计算机安全 数据挖掘 计算机网络
作者
May Itani,Hanaa Basheer,Fouad Eddine
标识
DOI:10.1109/smartnets58706.2023.10216144
摘要

Cybercrimes are increasing rapidly throughout the world, leading to financial losses and compromising the integrity and confidentiality of private data. Statistics showed that cybercrimes led to losses of around $6 trillion in 2021 based on a survey by Cybersecurity Ventures. Knowing that IoT networks are considered a source of identifiable data for vicious attackers to carry out criminal actions using automated processes, machine learning (ML)-assisted methods for IoT security have gained much attention in recent years. While conventional ML relies on a single server to store all of its data, which makes it a less desirable option for domains concerned about user privacy, the Federated Learning (FL)-based anomaly detection technique, which utilizes decentralized on-device data to identify IoT network intrusions, represents the proposed solution to the aforementioned problem. We propose a framework to train and test IoT data from health network using different classical machine learning algorithms and an enhanced federated learning model. FL is a framework that learns continuously in an iterative manner by training locally at the client side with the clientś individual data, and then updating the central server by forwarding the required data. We evaluated the performance of different algorithms based on accuracy, precision, recall and F1-score via different iterations. To develop a strong detection system, we used multiple datasets and generated different results. These results show decent and promising accuracy hence a promising solution towards telehealth application using machine learning techniques in detecting threats on IoT networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ztgzttt发布了新的文献求助10
1秒前
1秒前
雨姐科研应助1234567采纳,获得10
2秒前
3秒前
在水一方应助神勇太君采纳,获得10
3秒前
飞雪完成签到,获得积分10
4秒前
姜露萍发布了新的文献求助10
5秒前
sfc999发布了新的文献求助10
5秒前
jias发布了新的文献求助10
5秒前
5秒前
李健应助妮可收件箱采纳,获得10
7秒前
8y24dp发布了新的文献求助10
8秒前
科研小王发布了新的文献求助10
8秒前
踏实采波完成签到,获得积分10
8秒前
10秒前
10秒前
周裕川发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
1234567完成签到,获得积分10
12秒前
12秒前
14秒前
14秒前
青余完成签到,获得积分10
15秒前
15秒前
田様应助书记采纳,获得10
15秒前
LisA__完成签到,获得积分10
16秒前
大个应助hxueh采纳,获得10
17秒前
17秒前
17秒前
心木完成签到 ,获得积分10
18秒前
奋斗的发夹完成签到,获得积分10
19秒前
y13333完成签到,获得积分10
19秒前
王俊完成签到,获得积分10
20秒前
jias完成签到,获得积分10
21秒前
大个应助youth采纳,获得10
22秒前
姜露萍完成签到,获得积分20
22秒前
趁热拿铁完成签到 ,获得积分10
22秒前
媛媛完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5540506
求助须知:如何正确求助?哪些是违规求助? 4627108
关于积分的说明 14602337
捐赠科研通 4568126
什么是DOI,文献DOI怎么找? 2504382
邀请新用户注册赠送积分活动 1481998
关于科研通互助平台的介绍 1453645