Attack Detection in IoT-Based Healthcare Networks Using Hybrid Federated Learning

计算机科学 异常检测 机器学习 服务器 人工智能 联合学习 保密 物联网 计算机安全 数据挖掘 计算机网络
作者
May Itani,Hanaa Basheer,Fouad Eddine
标识
DOI:10.1109/smartnets58706.2023.10216144
摘要

Cybercrimes are increasing rapidly throughout the world, leading to financial losses and compromising the integrity and confidentiality of private data. Statistics showed that cybercrimes led to losses of around $6 trillion in 2021 based on a survey by Cybersecurity Ventures. Knowing that IoT networks are considered a source of identifiable data for vicious attackers to carry out criminal actions using automated processes, machine learning (ML)-assisted methods for IoT security have gained much attention in recent years. While conventional ML relies on a single server to store all of its data, which makes it a less desirable option for domains concerned about user privacy, the Federated Learning (FL)-based anomaly detection technique, which utilizes decentralized on-device data to identify IoT network intrusions, represents the proposed solution to the aforementioned problem. We propose a framework to train and test IoT data from health network using different classical machine learning algorithms and an enhanced federated learning model. FL is a framework that learns continuously in an iterative manner by training locally at the client side with the clientś individual data, and then updating the central server by forwarding the required data. We evaluated the performance of different algorithms based on accuracy, precision, recall and F1-score via different iterations. To develop a strong detection system, we used multiple datasets and generated different results. These results show decent and promising accuracy hence a promising solution towards telehealth application using machine learning techniques in detecting threats on IoT networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Yuna完成签到,获得积分10
刚刚
smottom应助mario采纳,获得10
刚刚
一只猪发布了新的文献求助10
1秒前
o1g完成签到,获得积分10
1秒前
xueshu发布了新的文献求助10
1秒前
dongdong发布了新的文献求助30
1秒前
想喝奶茶发布了新的文献求助10
1秒前
1秒前
热爱生活完成签到,获得积分10
1秒前
1秒前
大胆天抒完成签到,获得积分20
2秒前
2秒前
老迟到的小蘑菇完成签到,获得积分10
3秒前
3秒前
answer完成签到,获得积分10
3秒前
3秒前
猫猫发布了新的文献求助10
3秒前
tingting9完成签到,获得积分10
3秒前
方便面条子完成签到 ,获得积分10
4秒前
shilong.yang发布了新的文献求助20
4秒前
Orange应助规方矩圆采纳,获得10
4秒前
4秒前
赘婿应助娄某采纳,获得10
4秒前
BowieHuang应助11231采纳,获得10
5秒前
5秒前
ze发布了新的文献求助10
5秒前
5秒前
5秒前
善学以致用应助热爱生活采纳,获得10
5秒前
奋斗瑶发布了新的文献求助10
6秒前
优雅翎完成签到,获得积分10
6秒前
打打应助大胆天抒采纳,获得10
6秒前
皓月繁星发布了新的文献求助10
7秒前
英俊的铭应助caicai采纳,获得10
7秒前
Puffkten完成签到,获得积分10
7秒前
Exist完成签到 ,获得积分10
7秒前
Chenzhs完成签到,获得积分10
7秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624579
求助须知:如何正确求助?哪些是违规求助? 4710376
关于积分的说明 14950345
捐赠科研通 4778512
什么是DOI,文献DOI怎么找? 2553318
邀请新用户注册赠送积分活动 1515240
关于科研通互助平台的介绍 1475577