Attack Detection in IoT-Based Healthcare Networks Using Hybrid Federated Learning

计算机科学 异常检测 机器学习 服务器 人工智能 联合学习 保密 物联网 计算机安全 数据挖掘 计算机网络
作者
May Itani,Hanaa Basheer,Fouad Eddine
标识
DOI:10.1109/smartnets58706.2023.10216144
摘要

Cybercrimes are increasing rapidly throughout the world, leading to financial losses and compromising the integrity and confidentiality of private data. Statistics showed that cybercrimes led to losses of around $6 trillion in 2021 based on a survey by Cybersecurity Ventures. Knowing that IoT networks are considered a source of identifiable data for vicious attackers to carry out criminal actions using automated processes, machine learning (ML)-assisted methods for IoT security have gained much attention in recent years. While conventional ML relies on a single server to store all of its data, which makes it a less desirable option for domains concerned about user privacy, the Federated Learning (FL)-based anomaly detection technique, which utilizes decentralized on-device data to identify IoT network intrusions, represents the proposed solution to the aforementioned problem. We propose a framework to train and test IoT data from health network using different classical machine learning algorithms and an enhanced federated learning model. FL is a framework that learns continuously in an iterative manner by training locally at the client side with the clientś individual data, and then updating the central server by forwarding the required data. We evaluated the performance of different algorithms based on accuracy, precision, recall and F1-score via different iterations. To develop a strong detection system, we used multiple datasets and generated different results. These results show decent and promising accuracy hence a promising solution towards telehealth application using machine learning techniques in detecting threats on IoT networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牧星河完成签到,获得积分10
刚刚
1秒前
感动的嚓茶完成签到,获得积分10
1秒前
Ulrica完成签到,获得积分10
1秒前
2秒前
Owen应助智海瑞采纳,获得10
2秒前
3秒前
英勇含烟完成签到,获得积分10
3秒前
3秒前
roywin完成签到,获得积分10
4秒前
4秒前
Cbbaby完成签到,获得积分10
4秒前
胡健完成签到,获得积分20
5秒前
咕噜噜咕噜完成签到,获得积分10
6秒前
semigreen完成签到 ,获得积分10
6秒前
乐乐应助橘子采纳,获得10
6秒前
胡健发布了新的文献求助10
8秒前
8秒前
微笑向卉发布了新的文献求助10
8秒前
WangXinkui完成签到,获得积分10
8秒前
JoJo完成签到,获得积分10
8秒前
zzyh完成签到,获得积分10
9秒前
9秒前
科研通AI6应助是鸢采纳,获得10
9秒前
浮游应助陨落的繁星采纳,获得10
10秒前
10秒前
颜凡桃完成签到,获得积分10
10秒前
程程完成签到,获得积分10
12秒前
研ZZ完成签到,获得积分10
13秒前
13秒前
慢慢完成签到,获得积分10
13秒前
Ll完成签到 ,获得积分10
14秒前
开朗的觅柔完成签到,获得积分10
14秒前
杂化轨道退役研究员完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
共享精神应助小虾米采纳,获得10
16秒前
程住气完成签到 ,获得积分10
16秒前
灯灯完成签到,获得积分10
16秒前
LJ程励完成签到 ,获得积分10
16秒前
...完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
Psychology for Teachers 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4597902
求助须知:如何正确求助?哪些是违规求助? 4009316
关于积分的说明 12410427
捐赠科研通 3688598
什么是DOI,文献DOI怎么找? 2033325
邀请新用户注册赠送积分活动 1066591
科研通“疑难数据库(出版商)”最低求助积分说明 951742