Attack Detection in IoT-Based Healthcare Networks Using Hybrid Federated Learning

计算机科学 异常检测 机器学习 服务器 人工智能 联合学习 保密 物联网 计算机安全 数据挖掘 计算机网络
作者
May Itani,Hanaa Basheer,Fouad Eddine
标识
DOI:10.1109/smartnets58706.2023.10216144
摘要

Cybercrimes are increasing rapidly throughout the world, leading to financial losses and compromising the integrity and confidentiality of private data. Statistics showed that cybercrimes led to losses of around $6 trillion in 2021 based on a survey by Cybersecurity Ventures. Knowing that IoT networks are considered a source of identifiable data for vicious attackers to carry out criminal actions using automated processes, machine learning (ML)-assisted methods for IoT security have gained much attention in recent years. While conventional ML relies on a single server to store all of its data, which makes it a less desirable option for domains concerned about user privacy, the Federated Learning (FL)-based anomaly detection technique, which utilizes decentralized on-device data to identify IoT network intrusions, represents the proposed solution to the aforementioned problem. We propose a framework to train and test IoT data from health network using different classical machine learning algorithms and an enhanced federated learning model. FL is a framework that learns continuously in an iterative manner by training locally at the client side with the clientś individual data, and then updating the central server by forwarding the required data. We evaluated the performance of different algorithms based on accuracy, precision, recall and F1-score via different iterations. To develop a strong detection system, we used multiple datasets and generated different results. These results show decent and promising accuracy hence a promising solution towards telehealth application using machine learning techniques in detecting threats on IoT networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
gui完成签到,获得积分10
刚刚
GGG完成签到,获得积分10
1秒前
mlll发布了新的文献求助10
1秒前
Akiba完成签到,获得积分10
2秒前
2秒前
2秒前
123发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
缓慢的白开水完成签到,获得积分10
3秒前
4秒前
wait完成签到,获得积分10
4秒前
aaa发布了新的文献求助30
4秒前
渐入佳境完成签到,获得积分20
4秒前
小二郎应助想学习采纳,获得10
5秒前
Jiang发布了新的文献求助30
5秒前
轻松的哈完成签到,获得积分10
5秒前
6秒前
6秒前
WangQ完成签到,获得积分10
7秒前
无畏发布了新的文献求助10
7秒前
7秒前
龙华之士发布了新的文献求助10
8秒前
echo发布了新的文献求助10
8秒前
gewenxue完成签到,获得积分10
8秒前
传奇3应助会撒娇的绮兰采纳,获得10
8秒前
隐形曼青应助渐入佳境采纳,获得10
8秒前
8秒前
风中冰香应助李琦采纳,获得10
8秒前
受伤的老头完成签到,获得积分10
9秒前
媚颜发布了新的文献求助10
9秒前
林梓博完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
典雅的依秋完成签到,获得积分10
10秒前
11秒前
LiuHK发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531594
求助须知:如何正确求助?哪些是违规求助? 4620404
关于积分的说明 14573182
捐赠科研通 4560142
什么是DOI,文献DOI怎么找? 2498713
邀请新用户注册赠送积分活动 1478629
关于科研通互助平台的介绍 1449993