Attack Detection in IoT-Based Healthcare Networks Using Hybrid Federated Learning

计算机科学 异常检测 机器学习 服务器 人工智能 联合学习 保密 物联网 计算机安全 数据挖掘 计算机网络
作者
May Itani,Hanaa Basheer,Fouad Eddine
标识
DOI:10.1109/smartnets58706.2023.10216144
摘要

Cybercrimes are increasing rapidly throughout the world, leading to financial losses and compromising the integrity and confidentiality of private data. Statistics showed that cybercrimes led to losses of around $6 trillion in 2021 based on a survey by Cybersecurity Ventures. Knowing that IoT networks are considered a source of identifiable data for vicious attackers to carry out criminal actions using automated processes, machine learning (ML)-assisted methods for IoT security have gained much attention in recent years. While conventional ML relies on a single server to store all of its data, which makes it a less desirable option for domains concerned about user privacy, the Federated Learning (FL)-based anomaly detection technique, which utilizes decentralized on-device data to identify IoT network intrusions, represents the proposed solution to the aforementioned problem. We propose a framework to train and test IoT data from health network using different classical machine learning algorithms and an enhanced federated learning model. FL is a framework that learns continuously in an iterative manner by training locally at the client side with the clientś individual data, and then updating the central server by forwarding the required data. We evaluated the performance of different algorithms based on accuracy, precision, recall and F1-score via different iterations. To develop a strong detection system, we used multiple datasets and generated different results. These results show decent and promising accuracy hence a promising solution towards telehealth application using machine learning techniques in detecting threats on IoT networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tyZhang完成签到,获得积分10
刚刚
罗美女应助ATYS采纳,获得10
刚刚
淡淡的纸鹤完成签到,获得积分10
1秒前
勤恳觅露完成签到,获得积分10
1秒前
dangdang应助科研小花狗采纳,获得10
1秒前
冬季去看雨完成签到,获得积分10
1秒前
香蕉觅云应助高高采纳,获得10
1秒前
1秒前
Xu发布了新的文献求助10
2秒前
kunkun完成签到,获得积分10
2秒前
去去去发布了新的文献求助10
2秒前
倩Q完成签到,获得积分10
3秒前
彭于彦祖应助Uranus采纳,获得30
3秒前
彭于彦祖应助Uranus采纳,获得30
3秒前
lllooo发布了新的文献求助20
4秒前
动点子智慧完成签到,获得积分10
4秒前
5秒前
田様应助郭先生采纳,获得10
5秒前
俏皮沁完成签到,获得积分10
5秒前
Fairy发布了新的文献求助10
5秒前
5秒前
zhangguo发布了新的文献求助10
6秒前
Owen应助小北采纳,获得10
6秒前
哟哟哟发布了新的文献求助10
6秒前
英勇的竺完成签到,获得积分10
6秒前
chloe完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
白榆完成签到 ,获得积分10
7秒前
haochengshen完成签到,获得积分20
7秒前
7秒前
李健应助苏东方采纳,获得10
7秒前
7秒前
8秒前
silence嘻嘻完成签到 ,获得积分10
9秒前
cara完成签到,获得积分10
9秒前
cathyeileen完成签到,获得积分10
9秒前
yy111发布了新的文献求助10
10秒前
10秒前
南浔完成签到,获得积分10
10秒前
大树守卫发布了新的文献求助10
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699375
求助须知:如何正确求助?哪些是违规求助? 5130580
关于积分的说明 15225579
捐赠科研通 4854309
什么是DOI,文献DOI怎么找? 2604571
邀请新用户注册赠送积分活动 1556027
关于科研通互助平台的介绍 1514304