Attack Detection in IoT-Based Healthcare Networks Using Hybrid Federated Learning

计算机科学 异常检测 机器学习 服务器 人工智能 联合学习 保密 物联网 计算机安全 数据挖掘 计算机网络
作者
May Itani,Hanaa Basheer,Fouad Eddine
标识
DOI:10.1109/smartnets58706.2023.10216144
摘要

Cybercrimes are increasing rapidly throughout the world, leading to financial losses and compromising the integrity and confidentiality of private data. Statistics showed that cybercrimes led to losses of around $6 trillion in 2021 based on a survey by Cybersecurity Ventures. Knowing that IoT networks are considered a source of identifiable data for vicious attackers to carry out criminal actions using automated processes, machine learning (ML)-assisted methods for IoT security have gained much attention in recent years. While conventional ML relies on a single server to store all of its data, which makes it a less desirable option for domains concerned about user privacy, the Federated Learning (FL)-based anomaly detection technique, which utilizes decentralized on-device data to identify IoT network intrusions, represents the proposed solution to the aforementioned problem. We propose a framework to train and test IoT data from health network using different classical machine learning algorithms and an enhanced federated learning model. FL is a framework that learns continuously in an iterative manner by training locally at the client side with the clientś individual data, and then updating the central server by forwarding the required data. We evaluated the performance of different algorithms based on accuracy, precision, recall and F1-score via different iterations. To develop a strong detection system, we used multiple datasets and generated different results. These results show decent and promising accuracy hence a promising solution towards telehealth application using machine learning techniques in detecting threats on IoT networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顾矜应助Hah采纳,获得10
刚刚
2秒前
蜀黍发布了新的文献求助10
2秒前
3秒前
盛隆发布了新的文献求助10
3秒前
wanci应助可靠幻然采纳,获得10
3秒前
眯眯眼的世界完成签到,获得积分10
4秒前
打打应助Gu采纳,获得10
5秒前
哈哈哈发布了新的文献求助10
5秒前
丁真浩完成签到,获得积分10
6秒前
于晓露完成签到,获得积分10
6秒前
香蕉觅云应助旦皋采纳,获得10
6秒前
7秒前
sure发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
玛卡巴卡发布了新的文献求助10
8秒前
8秒前
点一个随机昵称完成签到,获得积分10
9秒前
9秒前
溯溯完成签到 ,获得积分10
9秒前
冒昧硕完成签到,获得积分10
11秒前
意已完成签到,获得积分20
12秒前
NexusExplorer应助ke采纳,获得30
12秒前
蛰曜发布了新的文献求助10
12秒前
闲听花落发布了新的文献求助10
13秒前
年轻的夕阳关注了科研通微信公众号
13秒前
14秒前
充电宝应助哈哈哈哈采纳,获得10
14秒前
桐桐应助盛隆采纳,获得10
15秒前
16秒前
开朗成风完成签到 ,获得积分10
19秒前
cx发布了新的文献求助10
19秒前
桑小强完成签到,获得积分10
19秒前
所所应助yyj采纳,获得10
20秒前
lyt发布了新的文献求助10
20秒前
21秒前
22秒前
高兴的煎饼完成签到,获得积分10
22秒前
22秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125089
求助须知:如何正确求助?哪些是违规求助? 4329088
关于积分的说明 13489719
捐赠科研通 4163770
什么是DOI,文献DOI怎么找? 2282542
邀请新用户注册赠送积分活动 1283707
关于科研通互助平台的介绍 1222981