Cross-subject EEG linear domain adaption based on batch normalization and depthwise convolutional neural network

计算机科学 规范化(社会学) 卷积神经网络 脑电图 人工智能 模式识别(心理学) 支持向量机 分类器(UML) 语音识别 心理学 人类学 精神科 社会学
作者
Guofa Li,Delin Ouyang,Liu Yang,Qingkun Li,Kai Tian,Baiheng Wu,Gang Guo
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:280: 111011-111011
标识
DOI:10.1016/j.knosys.2023.111011
摘要

Electroencephalogram (EEG)-based emotion recognition has been widely used in affective computing. However, the study on improving recognition accuracy across individuals is insufficient. In this study, a new linear domain adaption approach with experiment-level batch normalization and a single-layer depthwise convolutional neural network is proposed. In particular, the experiment-level batch normalization and depthwise convolutional neural network can be integrated as a linear mapping with a scaling parameter and a translation parameter. By linear mapping, difference between subjects in different domain can be effectively diminished, and the mapping parameters can be used to further investigate EEG emotion mechanism. The domain adaption experiments are conducted with SJTU emotion EEG dataset and SJTU emotion EEG dataset-IV, which are divided into source domain and target domain to validate the recognition effect across individuals. Multiple traditional machine learning and deep learning classifiers are used to examine the effectiveness of the proposed approach. By mapping the EEG data from source domain to target domain, the increment of recognition accuracy is up to 61.11% when using the support vector machine classifier. The highest recognition accuracy 97.22% is achieved when using the logistic regression classifier. The scaling and translation parameters in the mapping procedure are then analyzed with statistical methods. It is found that EEG signal waves in the same emotion category are highly similar and EEG data have characteristics including integration of channels and hierarchy of frequency bands. In addition, the experimental results indicate that emotion complexity and emotion sensitiveness of brain cortex regions can affect the correlations between channels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
手残症完成签到,获得积分10
刚刚
负责冰海发布了新的文献求助10
1秒前
1秒前
2秒前
学术菜鸡发布了新的文献求助10
2秒前
李健的小迷弟应助Jun采纳,获得10
2秒前
Bruial完成签到,获得积分10
3秒前
爱科研的小虞完成签到,获得积分10
4秒前
搜集达人应助Pidan采纳,获得10
4秒前
安恋雨发布了新的文献求助10
4秒前
4秒前
Zz发布了新的文献求助10
4秒前
JamesPei应助芦荟酱采纳,获得10
5秒前
棋鬼王发布了新的文献求助10
5秒前
Dr.Dream完成签到,获得积分10
5秒前
6秒前
大虫子完成签到,获得积分10
6秒前
Cheese完成签到 ,获得积分10
6秒前
7秒前
许锦程完成签到,获得积分10
7秒前
Clarence发布了新的文献求助10
7秒前
善学以致用应助劉浏琉采纳,获得10
7秒前
麝狸猫发布了新的文献求助10
8秒前
欧阳完成签到,获得积分10
8秒前
8秒前
懒羊羊完成签到,获得积分10
9秒前
午夜小菜鸟完成签到,获得积分10
9秒前
9秒前
jianyulv发布了新的文献求助10
9秒前
9秒前
三十发布了新的文献求助10
10秒前
10秒前
王阳洋应助lynn采纳,获得10
11秒前
专注大门完成签到,获得积分10
11秒前
Ava应助noss采纳,获得10
11秒前
沉舟完成签到 ,获得积分10
12秒前
12秒前
12秒前
Tingting完成签到 ,获得积分10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
2024-2030年中国聚异戊二烯橡胶行业市场现状调查及发展前景研判报告 500
Barth, Derrida and the Language of Theology 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3592949
求助须知:如何正确求助?哪些是违规求助? 3160712
关于积分的说明 9531877
捐赠科研通 2864041
什么是DOI,文献DOI怎么找? 1573978
邀请新用户注册赠送积分活动 739178
科研通“疑难数据库(出版商)”最低求助积分说明 723368